【模式识别与机器学习】——4.3离散K-L变换
全称:Karhunen-Loeve变换(卡洛南-洛伊变换) 前面讨论的特征选择是在一定准则下,从n个特征中选出k个来反映原有模式。 这种简单删掉某n-k个特征的做法并不十分理想,因为一般来说,原来的n个数据各自在不同程度上反映了识别对象的某些特征,简单地删去某些特征可能会丢失较多的有用信息。 如果将原来的特征做正交变换,获得的每个数据都是原来n个数据的线性组合,然后从新的数据中选出少数几个,使其尽可能多地反映各类模式之间的差异,而这些特征间又尽可能相互独立,则比单纯的选择方法更灵活、更有效。 K-L变换就是一种适用于任意概率密度函数的正交变换。
4.3.1 离散的有限K-L展开
4.3.2 按K-L展开式选择特征
【模式识别与机器学习】——4.3离散K-L变换的更多相关文章
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- 今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写 ...
- SIGAI机器学习第七集 k近邻算法
讲授K近邻思想,kNN的预测算法,距离函数,距离度量学习,kNN算法的实际应用. KNN是有监督机器学习算法,K-means是一个聚类算法,都依赖于距离函数.没有训练过程,只有预测过程. 大纲: k近 ...
- paper 95:《模式识别和机器学习》资源
Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/sea ...
- Bishop的大作《模式识别与机器学习》Ready to read!
久仰Bishop的大作“Pattern Recognition and Machine Learning”已久,在我的硬盘里已经驻扎一年有余,怎奈惧其页数浩瀚,始终未敢入手.近日看文献,屡屡引用之.不 ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- Pattern Recognition And Machine Learning (模式识别与机器学习) 笔记 (1)
By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础 ...
- 机器学习算法( 二、K - 近邻算法)
一.概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理:首先有一个样本数据集合(训练样本集),并且样本数据集合中每条数据都存在标签(分类),即我们知道样本数据中每一条数据与所属分类 ...
- 机器学习小记——KNN(K近邻) ^_^ (一)
为了让绝大多数人都可以看懂,所以我就用简单的话语来讲解机器学习每一个算法 第一次写ML的博文,所以可能会有些地方出错,欢迎各位大佬提出意见或错误 祝大家开心进步每一天- 博文代码全部为python 简 ...
随机推荐
- 谈谈JVM(基础模型)
一,基本概念 JVM是可运行Java代码的假想计算机 ,包括一套字节码指令集.一组寄存器.一个栈. 一个垃圾回收,堆 和 一个存储方法域. JVM 是运行在操作系统之上的,它与硬件没 ...
- electron代码审计
解包 Electron跨平台程序破解https://www.52pojie.cn/thread-563895-1-1.html Electron封装的跨平台程序破解的一般思路: 安装npm(至于如何安 ...
- 手写简易SpringMVC
手写简易SpringMVC 手写系列框架代码基于普通Maven构建,因此在手写SpringMVC的过程中,需要手动的集成Tomcat容器 必备知识: Servlet相关理解和使用,Maven,Java ...
- [jvm] -- 引用篇
四种引用及其应用场景 强引用 强引用是平常中使用最多的引用,强引用在程序内存不足(OOM)的时候也不会被回收. 使用场景:啥时候都在使用 软引用 软引用在程序内存不足时,会被回收. 使用场景:创建缓存 ...
- 《Python测试开发技术栈—巴哥职场进化记》—前言
写在前面 今年从4月份开始写一本讲Python测试开发技术栈的书,主要有两个目的,第一是将自己掌握的一些内容分享给大家,第二是希望自己能系统的梳理和学习Python相关的技术栈.当时我本来打算以故事体 ...
- 好用的npm模块记录
标签: node node盛行的今天,前端开发已经离不开npm模块的使用,大名鼎鼎的如gulp,webpack等,此处不多说,除了它们有那么几个常用的npm模块是我喜欢并依赖它的,下面就是我平时工作中 ...
- Teambition如何使用二次验证码/虚拟MFA/两步验证/谷歌验证器?
一般点账户名——设置——安全设置中开通虚拟MFA两步验证 具体步骤见链接 Teambition如何使用二次验证码/虚拟MFA/两步验证/谷歌验证器? 二次验证码小程序于谷歌身份验证器APP的优势 1 ...
- Netty 学习笔记(2) ------ 数据传输载体ByteBuf
Netty中读写以ByteBuf为载体进行交互 ByteBuf的结构 ByteBuf以readerIndex和writerIndex划分为三块区域,废弃字节,可读字节,可写字节.每次从ByteBuf读 ...
- django 学习记录(一)
不使用 drf 来实现django 的 api 接口 json序列化 from django.shortcuts import render from django.views.generic.bas ...
- SOLID:面向对象设计的前五项原则
S.O.L.I.D是Robert C. Martin提出的前五个面向对象设计(OOD)原则的首字母缩写,他更为人所熟知的名字是Uncle Bob. 将这些原理结合在一起,可使程序员轻松开发易于维护 ...