SPOJ16607 IE1 - Sweets
题面
传送门:
Solution
这题的想法挺妙的。
.
首先,对于这种区间求答案的问题,我们一般都可以通过类似前缀和的思想一减来消去a,即求[a,b]的答案可以转化为求[1,b]-[1,a-1]
接下来我们可以先考虑一下每个物品数量不限制的做法。我们可以把这个问题类比为放球问题:我们要在n个相同的盒子里放x个球,这个问题可以用隔板法解决,显然答案为\(C_{x+n-1}^{n-1}\)
因为我们的n特别小,而且p为合数,所以可以用分解质因数的方法来算这个组合数。
.
接下来,我们可以考虑一下如何处理多计算的答案,考虑用容斥定理来解决这个问题。
不了解容斥定理的同志可以先看一下这篇文章
我们要求的是至少有一个物品不满足要求的方案总数,即求所有不满足要求的方案的并。
根据容斥定理,这个并的值为 \(\sum有一个物品不满足要求-有两个物品不满足要求+有三个物品不满足要求-...\)
所以说,我们只需要强制某些物品先选\(m_i+1\)个,再按照上面的放球问题的公式来计算就可以得出有若干个物品不满足要求的方案数。
答案即为总方案数-不满足要求的方案数的并
时间复杂度\(O(2^n*log_{max(a,b)})\)
这个问题就被我们切掉啦ヽ( ̄▽ ̄)ノ
.
如果有不清楚的地方可以看一下代码。
Code
//Luogu SP16607 IE1 - Sweets
//Jan,14th,2019
//容斥原理的应用
#include<iostream>
#include<cstdio>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int poi=2004;
const int N=15;
int prime[6]={-1,2,3,5,7};
long long C(long long x,long long y)//x为底,y为指
{
if(y>x) return 0;
int cnt[6]={0};
long long t_ans=1;
for(long long i=x-y+1;i<=x;i++)
{
long long t_num=i;
for(int j=1;j<=4;j++)
while(t_num%prime[j]==0)
{
t_num/=prime[j];
cnt[j]++;
}
t_ans=(t_ans*t_num)%poi;
}
for(long long i=1;i<=y;i++)
{
long long t_num=i;
for(int j=1;j<=4;j++)
while(t_num%prime[j]==0)
{
t_num/=prime[j];
cnt[j]--;
}
}
for(int i=1;i<=4;i++)
while(cnt[i]>0)
t_ans=(t_ans*prime[i])%poi,cnt[i]--;
return t_ans;
}
int m[N],n,a,b;
long long t_ans2,t_x;
bool used[N];
void dfs(int now)
{
if(now==n+1)
{
long long t_cnt=0,tot=0;
for(int i=1;i<=n;i++)
if(used[i]==true)
t_cnt+=m[i]+1,tot++;
if(t_cnt>t_x) return;
long long f=(tot%2==1?-1:1);
t_ans2+=f*C(t_x-t_cnt+n,n);
t_ans2=(t_ans2%poi+poi)%poi;
return;
}
for(int i=0;i<=1;i++)
used[now]=i,dfs(now+1);
}
long long Calc(long long x)
{
t_ans2=0,t_x=x;
dfs(1);
return t_ans2;
}
int main()
{
n=read(),a=read(),b=read();
for(int i=1;i<=n;i++)
m[i]=read();
printf("%lld",((Calc(b)-Calc(a-1))%poi+poi)%poi);
return 0;
}
SPOJ16607 IE1 - Sweets的更多相关文章
- WC2019 填坑记
2019年1月8日 1.Luogu P2147 [SDOI2008]洞穴勘测 (LCT模板题&LCT学习) 2019年1月9日 2.LuoguP3203 [HNOI2010]弹飞绵羊 (LC ...
- 万圣节的糖果(Halloween Sweets)
今天遇到codewars的一道题,这是链接,讲的是关于万圣节的一个题目,简单点说,就是9个包裹,一个天平,两次称的机会,怎么找出9个包裹中唯一一个较重的包裹. 像我这种年轻时候喜欢研究难题获得存在感的 ...
- BZOJ 3027 Sweets 生成函数,容斥
Description John得到了n罐糖果.不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的).第i个糖果罐里有 mi个糖果.John决定吃掉一 ...
- 题解-CodeChef IOPC14L Sweets Problem
Problem CodeChef-IOPC14L 题目概要:给定 \(n\) 种糖果且给定每种糖果的数量 \(A_i\),\(Q\) 组询问,每次问选出 \(S\) 个糖果的方案数(模\(10^9+7 ...
- cf1158A-The Party and Sweets - (贪心+思维)
题意:有n个男孩,m个女孩,每个男孩给每个女孩一堆糖果.b数组表示每个男孩给出的最少糖果数,g数组表示每个女孩子收到的最大糖果数.求所有男孩给出的最小糖果总数. 解题: 先对b数组和g数组从小到大排序 ...
- The Party and Sweets CodeForces - 1159C (拓排)
优化连边然后拓排. #include <iostream> #include <sstream> #include <algorithm> #include < ...
- Codeforces Round #600 (Div. 2) C - Sweets Eating
#include<iostream> #include<algorithm> #include<cstring> using namespace std ; typ ...
- C - Sweets Eating
规律题 前缀和+规律 先求前缀和...答案为c[i]=arr[i]+c[i-m]//i>m时. #include<bits/stdc++.h> using namespace std ...
- 【造轮子】打造一个简单的万能Excel读写工具
大家工作或者平时是不是经常遇到要读写一些简单格式的Excel? shit!~很蛋疼,因为之前吹牛,就搞了个这东西,还算是挺实用,和大家分享下. 厌烦了每次搞简单类型的Excel读写?不怕~来,喜欢流式 ...
随机推荐
- Python-变量-字符串
str 字符串如何表示字符串? 单行 单引号 '' 如果字符串中有单引号就需要双引号表示,反之亦然 双引号 " " 换行表示 \ one_str = "简洁胜于优雅&qu ...
- python基础知识 变量 数据类型 if判断
cpu 内存 硬盘 操作系统 cpu:计算机的运算和计算中心,相当于人类的大脑 飞机 内存:暂时存储一些数据,临时加载数据和应用程序 4G 8G 16G 32G 速度快,高铁 断电即消失 造价高 硬盘 ...
- 001 win10下安装linux子系统--Ubuntu及其图形界面
首次启动图形界面关键步骤及相关命令: 步骤: 打开Xlunch 打开XLaunch,选择:"one large window",Display number设置成0,其它默认即可, ...
- linux 漏洞列表
#CVE #Description #Kernels CVE-2017-1000367 [Sudo](Sudo 1.8.6p7 - 1.8.20) CVE-2017-7494 [Samba Remot ...
- Java 使用UDP传输一个小文本文件
工具1:Eclipse 工具2:IntelliJ IDEA Java工程的目录结构(基于IntelliJ IDEA) 例1.1:接收方,因为接收到的数据是字节流,为了方便,这里是基于Apache co ...
- P5091 【模板】扩展欧拉定理
题目链接 昨天考试考到了欧拉公式,结果发现自己不会,就来恶补一下. 欧拉公式 \(a^b \bmod p = a^{b}\) \(b < \varphi(p)\) \(a^b \bmod p = ...
- 怎么写一个Activity
a.新建一个类继承Actitvity b.重写oncreate方法 setContentView(R.layout.XXX);//设置布局文件 c.注册activity <activity an ...
- Talk is cheap. Show me the code的由来
Date: Fri, 25 Aug 2000 11:09:12 -0700 (PDT) From:Linus Torvalds Subject Re: SCO: "thread creati ...
- 【不知道怎么分类】HDU - 5963 朋友
题目内容 B君在围观一群男生和一群女生玩游戏,具体来说游戏是这样的: 给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1. 在一局游戏开始时,会确定一个节点作为根.接下来从女生开始 ...
- spring boot:spring security实现oauth2授权认证(spring boot 2.3.3)
一,oauth2的用途? 1,什么是oauth2? OAuth2 是一个开放标准, 它允许用户让第三方应用访问该用户在某一网站上存储的私密资源(如头像.照片.视频等), 在这个过程中无须将用户名和密码 ...