利用CNN进行中文文本分类(数据集是复旦中文语料)
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)
上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用CNN对中文文本进行分类。
数据处理还是没有变,只是换了个模型,代码如下:
# coding: utf-8 from __future__ import print_function import os
import sys
import time
from datetime import timedelta
import keras import numpy as np
import tensorflow as tf
from sklearn import metrics
#将词汇表中的单词映射成id
def word2id():
vocabulary_path = '/content/drive/My Drive/NLP/dataset/Fudan/vocabulary.txt'
fp1 = open(vocabulary_path,'r',encoding='utf-8')
word2id_dict = {}
for i,line in enumerate(fp1.readlines()):
word2id_dict[line.strip()] = i
print(len(word2id_dict))
fp1.close()
return word2id_dict #得到文本内容及对应的标签
def get_content_label(path):
#data = '/content/drive/My Drive/NLP/dataset/Fudan/data/train_clean_jieba.txt'
fp = open(path,'r',encoding='utf-8')
content_list = []
label_list = []
for line in fp.readlines():
line = line.strip().split('\t')
if len(line) == 2:
content_list.append(line[0])
label_list.append(line[1])
print(content_list[:5])
print(label_list[:5])
fp.close()
return content_list,label_list
#得到标签对应的id
def get_label_id():
label = '/content/drive/My Drive/NLP/dataset/Fudan/label.txt'
label2id_dict = {}
fp = open(label,'r',encoding='utf-8')
for line in fp.readlines():
line = line.strip().split('\t')
label2id_dict[line[0]] = line[1]
#print(label2id_dict)
return label2id_dict
#将文本内容中的词替换成词对应的id,并设定文本的最大长度
#对标签进行one-hot编码
def process(path,max_length):
contents,labels = get_content_label(path)
word_to_id = word2id()
cat_to_id = get_label_id()
data_id = []
label_id = []
for i in range(len(contents)):
data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])
label_id.append(cat_to_id[labels[i]]) # 使用keras提供的pad_sequences来将文本pad为固定长度
x_pad = keras.preprocessing.sequence.pad_sequences(data_id, max_length)
y_pad = keras.utils.to_categorical(label_id, num_classes=len(cat_to_id)) # 将标签转换为one-hot表示
return x_pad,y_pad def batch_iter(x, y, batch_size=64):
"""生成批次数据"""
data_len = len(x)
num_batch = int((data_len - 1) / batch_size) + 1 indices = np.random.permutation(np.arange(data_len))
x_shuffle = x[indices]
y_shuffle = y[indices] for i in range(num_batch):
start_id = i * batch_size
end_id = min((i + 1) * batch_size, data_len)
yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id] def evaluate(sess, x_, y_):
"""评估在某一数据上的准确率和损失"""
data_len = len(x_)
batch_eval = batch_iter(x_, y_, 128)
total_loss = 0.0
total_acc = 0.0
for x_batch, y_batch in batch_eval:
batch_len = len(x_batch)
feed_dict = feed_data(x_batch, y_batch, 1.0)
loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
total_loss += loss * batch_len
total_acc += acc * batch_len return total_loss / data_len, total_acc / data_len def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif))) def feed_data(x_batch, y_batch, keep_prob):
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.keep_prob: keep_prob
}
return feed_dict def get_training_word2vec_vectors(filename):
with np.load(filename) as data:
return data["embeddings"] class TCNNConfig(object):
"""CNN配置参数""" embedding_dim = 100 # 词向量维度
seq_length = 600 # 序列长度
num_classes = 20 # 类别数
num_filters = 256 # 卷积核数目
kernel_size = 5 # 卷积核尺寸
vocab_size = 183664 # 词汇表达小 hidden_dim = 128 # 全连接层神经元 dropout_keep_prob = 0.5 # dropout保留比例
learning_rate = 1e-3 # 学习率 batch_size = 64 # 每批训练大小
num_epochs = 10 # 总迭代轮次 print_per_batch = 20 # 每多少轮输出一次结果
save_per_batch = 10 # 每多少轮存入tensorboard
pre_trianing = None
vector_word_npz = '/content/drive/My Drive/NLP/dataset/Fudan/vector_word.npz' class TextCNN(object):
"""文本分类,CNN模型""" def __init__(self, config):
self.config = config # 三个待输入的数据
self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')
self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.cnn() def cnn(self):
"""CNN模型"""
# 词向量映射
with tf.device('/cpu:0'):
#embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])
embedding = tf.get_variable("embeddings", shape=[self.config.vocab_size, self.config.embedding_dim],
initializer=tf.constant_initializer(self.config.pre_trianing))
embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x) with tf.name_scope("cnn"):
# CNN layer
conv = tf.layers.conv1d(embedding_inputs, self.config.num_filters, self.config.kernel_size, name='conv')
# global max pooling layer
gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp') with tf.name_scope("score"):
# 全连接层,后面接dropout以及relu激活
fc = tf.layers.dense(gmp, self.config.hidden_dim, name='fc1')
fc = tf.contrib.layers.dropout(fc, self.keep_prob)
fc = tf.nn.relu(fc) # 分类器
self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')
self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1) # 预测类别 with tf.name_scope("optimize"):
# 损失函数,交叉熵
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
self.loss = tf.reduce_mean(cross_entropy)
# 优化器
self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss) with tf.name_scope("accuracy"):
# 准确率
correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) def train():
print("Configuring TensorBoard and Saver...")
# 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
tensorboard_dir = 'tensorboard/textcnn'
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir) tf.summary.scalar("loss", model.loss)
tf.summary.scalar("accuracy", model.acc)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
save_dir = 'checkpoint/textcnn/'
save_path = os.path.join(save_dir, 'best_validation') # 最佳验证结果保存路径
# 配置 Saver
saver = tf.train.Saver()
if not os.path.exists(save_dir):
os.makedirs(save_dir) print("Loading training and validation data...")
# 载入训练集与验证集
start_time = time.time()
train_dir = '/content/drive/My Drive/NLP/dataset/Fudan/data/train_clean_jieba.txt'
val_dir = '/content/drive/My Drive/NLP/dataset/Fudan/data/test_clean_jieba.txt'
x_train, y_train = process(train_dir, config.seq_length)
x_val, y_val = process(val_dir, config.seq_length)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif) # 创建session
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph) print('Training and evaluating...')
start_time = time.time()
total_batch = 0 # 总批次
best_acc_val = 0.0 # 最佳验证集准确率
last_improved = 0 # 记录上一次提升批次
require_improvement = 1000 # 如果超过1000轮未提升,提前结束训练 flag = False
for epoch in range(config.num_epochs):
print('Epoch:', epoch + 1)
batch_train = batch_iter(x_train, y_train, config.batch_size)
for x_batch, y_batch in batch_train:
feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob) if total_batch % config.save_per_batch == 0:
# 每多少轮次将训练结果写入tensorboard scalar
s = session.run(merged_summary, feed_dict=feed_dict)
writer.add_summary(s, total_batch) if total_batch % config.print_per_batch == 0:
# 每多少轮次输出在训练集和验证集上的性能
feed_dict[model.keep_prob] = 1.0
loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict)
loss_val, acc_val = evaluate(session, x_val, y_val) # todo if acc_val > best_acc_val:
# 保存最好结果
best_acc_val = acc_val
last_improved = total_batch
saver.save(sess=session, save_path=save_path)
improved_str = '*'
else:
improved_str = '' time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
+ ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str)) feed_dict[model.keep_prob] = config.dropout_keep_prob
session.run(model.optim, feed_dict=feed_dict) # 运行优化
total_batch += 1 if total_batch - last_improved > require_improvement:
# 验证集正确率长期不提升,提前结束训练
print("No optimization for a long time, auto-stopping...")
flag = True
break # 跳出循环
if flag: # 同上
break def test():
print("Loading test data...")
start_time = time.time()
test_dir = '/content/drive/My Drive/NLP/dataset/Fudan/data/test_clean_jieba.txt'
x_test, y_test = process(test_dir, config.seq_length)
save_path = 'checkpoint/textcnn/best_validation' session = tf.Session()
session.run(tf.global_variables_initializer()) saver = tf.train.Saver()
saver.restore(sess=session, save_path=save_path) # 读取保存的模型 print('Testing...')
loss_test, acc_test = evaluate(session, x_test, y_test)
msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
print(msg.format(loss_test, acc_test)) batch_size = 128
data_len = len(x_test)
num_batch = int((data_len - 1) / batch_size) + 1 y_test_cls = np.argmax(y_test, 1)
y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32) # 保存预测结果
for i in range(num_batch): # 逐批次处理
start_id = i * batch_size
end_id = min((i + 1) * batch_size, data_len)
feed_dict = {
model.input_x: x_test[start_id:end_id],
model.keep_prob: 1.0
}
y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)
categories = get_label_id().values()
# 评估
print("Precision, Recall and F1-Score...")
print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories)) # 混淆矩阵
print("Confusion Matrix...")
cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
print(cm) time_dif = get_time_dif(start_time)
print("Time usage:", time_dif) if __name__ == '__main__':
print('Configuring CNN model...')
config = TCNNConfig()
config.pre_trianing = get_training_word2vec_vectors(config.vector_word_npz)
model = TextCNN(config)
test()
结果如下:
Epoch: 8
Iter: 1080, Train Loss: 0.13, Train Acc: 95.31%, Val Loss: 0.44, Val Acc: 87.19%, Time: 0:04:33
Iter: 1100, Train Loss: 0.24, Train Acc: 95.31%, Val Loss: 0.44, Val Acc: 87.03%, Time: 0:04:38
Iter: 1120, Train Loss: 0.19, Train Acc: 93.75%, Val Loss: 0.43, Val Acc: 87.38%, Time: 0:04:42
Iter: 1140, Train Loss: 0.17, Train Acc: 92.19%, Val Loss: 0.42, Val Acc: 87.80%, Time: 0:04:47 *
Iter: 1160, Train Loss: 0.21, Train Acc: 90.62%, Val Loss: 0.41, Val Acc: 87.89%, Time: 0:04:53 *
Iter: 1180, Train Loss: 0.34, Train Acc: 89.06%, Val Loss: 0.43, Val Acc: 87.57%, Time: 0:04:57
Iter: 1200, Train Loss: 0.22, Train Acc: 92.19%, Val Loss: 0.41, Val Acc: 87.62%, Time: 0:05:01
Iter: 1220, Train Loss: 0.24, Train Acc: 90.62%, Val Loss: 0.41, Val Acc: 87.87%, Time: 0:05:06
Epoch: 9
Iter: 1240, Train Loss: 0.096, Train Acc: 95.31%, Val Loss: 0.4, Val Acc: 88.34%, Time: 0:05:11 *
Iter: 1260, Train Loss: 0.21, Train Acc: 92.19%, Val Loss: 0.41, Val Acc: 87.98%, Time: 0:05:16
Iter: 1280, Train Loss: 0.13, Train Acc: 95.31%, Val Loss: 0.42, Val Acc: 88.14%, Time: 0:05:20
Iter: 1300, Train Loss: 0.1, Train Acc: 98.44%, Val Loss: 0.43, Val Acc: 87.76%, Time: 0:05:25
Iter: 1320, Train Loss: 0.27, Train Acc: 92.19%, Val Loss: 0.39, Val Acc: 87.93%, Time: 0:05:29
Iter: 1340, Train Loss: 0.19, Train Acc: 92.19%, Val Loss: 0.45, Val Acc: 87.67%, Time: 0:05:33
Iter: 1360, Train Loss: 0.27, Train Acc: 92.19%, Val Loss: 0.42, Val Acc: 87.57%, Time: 0:05:38
Iter: 1380, Train Loss: 0.17, Train Acc: 92.19%, Val Loss: 0.41, Val Acc: 88.07%, Time: 0:05:42
Epoch: 10
Iter: 1400, Train Loss: 0.1, Train Acc: 98.44%, Val Loss: 0.39, Val Acc: 88.64%, Time: 0:05:47 *
Iter: 1420, Train Loss: 0.069, Train Acc: 96.88%, Val Loss: 0.4, Val Acc: 88.46%, Time: 0:05:51
Iter: 1440, Train Loss: 0.15, Train Acc: 98.44%, Val Loss: 0.41, Val Acc: 88.16%, Time: 0:05:56
Iter: 1460, Train Loss: 0.073, Train Acc: 98.44%, Val Loss: 0.4, Val Acc: 88.38%, Time: 0:06:00
Iter: 1480, Train Loss: 0.16, Train Acc: 95.31%, Val Loss: 0.42, Val Acc: 88.12%, Time: 0:06:05
Iter: 1500, Train Loss: 0.21, Train Acc: 92.19%, Val Loss: 0.41, Val Acc: 87.79%, Time: 0:06:09
Iter: 1520, Train Loss: 0.16, Train Acc: 93.75%, Val Loss: 0.41, Val Acc: 88.03%, Time: 0:06:13
进行测试,测试结果如下:
Testing...
2020-10-19 12:51:46.979827: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-10-19 12:51:47.221023: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
Test Loss: 0.39, Test Acc: 88.64%
Precision, Recall and F1-Score...
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
precision recall f1-score support 0 0.33 0.05 0.09 61
1 0.89 0.96 0.93 1022
2 0.39 0.15 0.22 59
3 0.89 0.95 0.92 1254
4 0.33 0.08 0.12 52
5 0.83 0.90 0.86 1026
6 0.95 0.98 0.96 1358
7 0.67 0.04 0.08 45
8 0.39 0.28 0.32 76
9 0.85 0.94 0.89 742
10 0.00 0.00 0.00 34
11 0.00 0.00 0.00 28
12 0.96 0.96 0.96 1218
13 0.87 0.92 0.89 642
14 0.50 0.15 0.23 33
15 0.67 0.07 0.13 27
16 0.91 0.91 0.91 1601
17 0.86 0.11 0.20 53
18 0.00 0.00 0.00 34
19 0.74 0.69 0.72 468 accuracy 0.89 9833
macro avg 0.60 0.46 0.47 9833
weighted avg 0.87 0.89 0.87 9833 Confusion Matrix...
[[ 3 1 0 42 0 5 0 0 4 3 0 0 0 2
0 0 1 0 0 0]
[ 0 983 0 5 0 1 0 0 0 0 0 0 8 3
0 0 14 1 0 7]
[ 1 2 9 3 0 4 2 0 3 1 0 0 2 15
3 0 13 0 0 1]
[ 0 3 0 1195 0 12 2 0 0 16 0 0 3 2
0 0 8 0 0 13]
[ 0 6 1 1 4 14 5 0 5 0 0 0 1 1
0 0 14 0 0 0]
[ 0 7 0 16 0 924 1 0 3 5 0 0 1 0
0 0 39 0 0 30]
[ 0 1 0 3 0 0 1328 1 1 0 0 0 1 17
0 0 5 0 0 1]
[ 0 0 0 13 0 12 0 2 0 8 0 0 1 2
0 0 0 0 0 7]
[ 2 1 1 7 0 39 0 0 21 0 0 0 0 4
0 0 0 0 0 1]
[ 0 1 0 10 0 10 1 0 1 696 0 0 0 0
0 0 3 0 0 20]
[ 0 0 0 4 0 0 0 0 0 15 0 0 0 1
0 0 1 0 0 13]
[ 0 0 0 2 1 0 5 0 2 0 0 0 0 10
1 0 7 0 0 0]
[ 0 11 0 1 1 1 8 0 3 0 0 0 1175 6
0 0 7 0 0 5]
[ 0 0 0 6 0 0 31 0 0 1 0 0 12 589
0 0 3 0 0 0]
[ 0 2 4 1 1 1 0 0 1 0 0 0 4 6
5 1 7 0 0 0]
[ 0 0 2 1 0 1 6 0 0 0 0 0 0 11
0 2 4 0 0 0]
[ 0 70 2 10 2 39 5 0 2 2 0 0 7 0
0 0 1451 0 0 11]
[ 3 4 0 10 3 12 0 0 6 3 0 0 0 0
0 0 5 6 0 1]
[ 0 7 4 0 0 1 0 0 1 1 0 0 6 5
1 0 7 0 0 1]
[ 0 4 0 7 0 43 5 0 1 72 0 0 1 1
0 0 11 0 0 323]]
Time usage: 0:00:13
至此使用传统的TF-IDF+朴素贝叶斯、RNN(LSTM、GRU)和CNN从数据的处理到模型的训练和测试就全部完成了,接下来准备弄弄Transformer和Bert了,欢迎关注。
参考:
https://github.com/gaussic/text-classification-cnn-rnn
利用CNN进行中文文本分类(数据集是复旦中文语料)的更多相关文章
- 基于tensorflow的文本分类总结(数据集是复旦中文语料)
代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification 往期精彩: 利用TfidfVectorizer进行 ...
- 利用RNN进行中文文本分类(数据集是复旦中文语料)
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...
- 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 万字总结Keras深度学习中文文本分类
摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文 ...
- Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...
- 中文文本分类之CharCNN
文本分类是自然语言处理中一个非常经典的任务,可用的模型非常多,相关的开源代码也非常多了.这篇博客用一个CNN模型,对新闻文本进行分类. 全部代码有4个模块:1.数据处理模块(命名为:cnews_loa ...
- 中文文本分类之TextRNN
RNN模型由于具有短期记忆功能,因此天然就比较适合处理自然语言等序列问题,尤其是引入门控机制后,能够解决长期依赖问题,捕获输入样本之间的长距离联系.本文的模型是堆叠两层的LSTM和GRU模型,模型的结 ...
- 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)
1.对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为 ...
随机推荐
- python3 读取写入excel操作-win32com
前面有写一篇是用xlrd操作excel的,这一篇是使用win32com来进行操作excel,个人推荐使用win32com. 要使用win32com组件,也需要先导入win32com包. # -*- c ...
- HTML+CSS系列:登录界面实现
一.效果 二.具体实现 1.index.html <!DOCTYPE html> <html> <head> <meta charset="utf- ...
- TCHAR数据类型介绍
转载:https://blog.csdn.net/mousebaby808/article/details/5259944 并不是所有的Windows操作系统都支持UNICODE编码的API(例如早期 ...
- 题解 CF149D
题目链接 首先,这是一道区间dp题: 首先我们假设 \(l\) ~ \(r\) 是一段合法的区间: 考虑状态,对于一个区间 \(l\) ~ \(r\) 的方案数,我们需要知道方案数,以及 \(l ,r ...
- NET Standard中配置TargetFrameworks输出多版本类库
系列目录 [已更新最新开发文章,点击查看详细] 在.NET Standard/.NET Core技术出现之前,编写一个类库项目(暂且称为基础通用类库PA)且需要支持不同 .NET Framew ...
- Codeforces Global Round 11 个人题解(B题)
Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...
- Linux批量查找与替换
Linux批量查找并替换文件夹下所有文件的内容 经常要使用到 Linux的批量查找与替换,这里为大家介绍使用 sed 命令和 grep 命令的结合来实现查找文件中的内容并替换. 语法格式: sed - ...
- cp命令:复制文件和目录
cp命令:复制文件和目录 [功能说明] cp命令可以理解英文单词copy的缩写,其功能为复制文件和目录. [语法格式] 1 cp [option] [source] [dest] 2 cp [选项] ...
- element中过滤器filters的使用(开发小记)
之前在开发过程中遇到这么一个问题,一串数据需要在el-table中展示,其中含有金额字段,需要将其转换成标准数据格式,即三位一个逗号间隔. 今年刚毕业就上手项目了,第一次接触的Vue,开发经验少,也忘 ...
- 程序3-6 WERTYU
把手放在键盘上时,稍不注意就会往右错一 位.这样,输入Q会变成输入W,输入J会变成输 入K等.键盘如图3-2所示. 输入一个错位后敲出的字符串(所有字母均 大写),输出打字员本来想打出的句子.输入保 ...