A. From Hero to Zero

通过取余快速运行第一步即可。由于\(a \% b (a >= b) <= \frac{a}{2}\)。所以总复杂度不超过\(O(log_2n)\)。

#include <cstdio>
#include <iostream>
using namespace std;
typedef long long LL;
int main(){
int T; scanf("%d", &T);
while(T--){
LL n, k, ans = 0;
scanf("%lld%lld", &n, &k);
while(n){
if(n % k) ans += n % k, n -= n % k;
if(n)n /= k, ans++;
}
printf("%lld\n", ans);
}
return 0;
}

B. Catch Overflow!

循环本质其实是栈的思想,可以用\(loop\)表示这层要循环多少次。注意如果直接乘可能爆\(long\ long\)。

其实当\(loop > 2 ^ {32} - 1\),后面的只要有\(add\)都不行了,所以只要用个\(flag\)记录就行了...

#include <cstdio>
#include <iostream>
#include <string>
#include <stack>
using namespace std;
typedef long long LL;
const LL INF = (1ll << 32) - 1;
LL n = 0, loop = 1;
stack<int> s;
string ch;
int x, flag = 0;
int main(){
ios::sync_with_stdio(false);
int T; cin >> T;
while(T--){
cin >> ch;
if(ch == "add"){
if(loop > INF){
cout << "OVERFLOW!!!" << endl;
return 0;
}
n += loop;
}else if(ch == "for"){
cin >> x;
if(loop > INF) {
flag++;
continue;
}
s.push(x);
loop *= x;
}else if(ch == "end"){
if(flag) {
flag --;
continue;
}
loop /= s.top();
s.pop();
}
if(n > INF){
cout << "OVERFLOW!!!" << endl;
return 0;
}
}
cout << n << endl;
return 0;
}

C. Electrification

注意数据是单调递增的,所以容易想到最短的一段必然是连续的,因为通过绝对值变成正的值顺序一定是\(1, 2, 3....n\),所以每次变成正的后,它可能是最小的,也有可能大于后面的一些,因为减的多了,所以整个区间会往后移动。我们可以尝试枚举每一个\([i, i + k]\)的这个区间,发现能使最小的即变为\((a[i + k] - a[i]) / 2\),也就是全部都减\((a[i + k] - a[i]) / 2\)(可以向下取整)。可以用小根堆维护最小值。由于精度问题,第一个可以不用\(/2\)。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 200010;
int n, k, a[N];
priority_queue<PII, vector<PII>, greater<PII> > q;
int main(){
int T; scanf("%d", &T);
while(T--){
while(q.size()) q.pop();
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i);
for(int i = 1; i + k <= n; i++)
q.push(make_pair(a[i + k] - a[i], (a[i] + a[i + k]) / 2));
printf("%d\n", q.top().second);
}
return 0;
}

D. Array Splitting

非常巧妙的做法,观察到让我们求的值其实是每一段的和$ * $ 相应的段数,但其实可以发现,一个\(ans\)的组成为:

\(1 * A + 2 * B + 3 * C = (A + B + C) + (B + C) + C\)。实质上就是找到\(k\)个后缀和,将他们加起来求最大值。这样直接贪心求解即可,记得\([1, n]\)这个区间必须选。

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 300010;
typedef long long LL;
int n, k, a[N];
LL ans, sum[N];
int main(){
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i);
for(int i = n; i; i--)
sum[i] = sum[i + 1] + a[i];
sort(sum + 2, sum + 1 + n);
ans = sum[1];
for(int i = n; i >= n - k + 2; i--) ans += sum[i];
printf("%lld\n", ans);
return 0;
}

E. Minimal Segment Cover

注意到\(l\)和\(r\)的范围并不大,我们可以预处理出从\(l\)出发最远能到哪里(一条线段),注意\(l\)也可以是中间点。这样我们只需要逐个枚举即可。时间复杂度\(SIZE ^ 2\),可以用倍增的形式优化。具体方式很像\(LCA\),预处理每个\(l\)跳\(2 ^ p(0 <= p <= \lfloor log_2500000 \rfloor)\)能到哪里即可。本质上就是枚举答案的二进制位即可。

时间复杂度\(O(slog_2s)\)(\(s\)是数字范围)

注意预处理顺序,要么\(i\)倒序枚举,要么\(j\)在第一个条件,否则没有正确的转移。

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 200010, SIZE = 500010, L = 19;
int n, m, maxS = -1, f[SIZE][L];
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++){
int l, r; scanf("%d%d", &l, &r);
f[l][0] = max(f[l][0], r);
maxS = max(maxS, r);
}
for(int i = 1; i <= maxS; i++)
f[i][0] = max(f[i][0], f[i - 1][0]); for(int j = 1; j < L; j++)
for(int i = 0; i <= maxS; i++)
f[i][j] = f[f[i][j - 1]][j - 1]; for(int i = 1; i <= m; i++){
int x, y, ans = 0; scanf("%d%d", &x, &y);
for(int i = L - 1; ~i; i--)
if(f[x][i] < y) x = f[x][i], ans |= 1 << i;
if(f[x][0] >= y) printf("%d\n", ans + 1);
else puts("-1");
}
return 0;
}

Codeforces Edu Round 66 A-E的更多相关文章

  1. CFEducational Codeforces Round 66题解报告

    CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...

  2. Educational Codeforces Round 66 差G

    Educational Codeforces Round 66 F 题意:长度为 n 的序列,求有多少个区间 \([l,r]\) ,使得其构成了一个 1~r-l+1 的排列. \(n \le 3*10 ...

  3. Codeforces Beta Round #61 (Div. 2)

    Codeforces Beta Round #61 (Div. 2) http://codeforces.com/contest/66 A 输入用long double #include<bit ...

  4. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  5. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  6. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  7. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

  8. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  9. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

随机推荐

  1. shell中数字、字符串、文件比较测试

    1.逻辑运算符:与&&     或||    非!  &&:双目操作符:与运算中:如果第一个数为假,结果一定为假   ==> 短路操作符 ||:双目操作符:或运算 ...

  2. 什么是低代码(Low-Code)?

    阿里云 云原生应用研发平台EMAS 彭群(楚衡) 一.前言 如果选择用一个关键词来代表即将过去的2020年,我相信所有人都会认同是"新冠".疫情来得太快就像龙卷风,短短数月就阻断了 ...

  3. Ceph中的Copyset概念和使用方法

    前言 copyset运用好能带来什么好处 降低故障情况下的数据丢失概率(增加可用性) 降低资源占用,从而降低负载 copyset的概念 首先我们要理解copyset的概念,用通俗的话说就是,包含一个数 ...

  4. H265Nalu头部解析

    一 NALU头部解析 F: 必须为0,为1表示语法错误.整包将被丢弃 NalType:nalu包的类型,其中VCL NAL和non-VCL NAL各有32类.0-31是vcl nal单元:32-63, ...

  5. HDU100题简要题解(2080~2089)

    //2089之前忘做了,周二C语言课上做,至于2086,写题解的时候突然发现之前的做法是错的,新的解法交上去CE,等周二再弄吧,其余题目暂时可以放心 HDU2080 夹角有多大II 题目链接 Prob ...

  6. 学习笔记:[算法分析]数据结构与算法Python版

    什么是算法分析 对比程序,还是算法? ❖如何对比两个程序? 看起来不同,但解决同一个问题的程序,哪个" 更好"? ❖程序和算法的区别 算法是对问题解决的分步描述 程序则是采用某种编 ...

  7. jwt鉴权学习 (php示例代码)

    前段时间听朋友讲起 jwt鉴权,博主我是一脸懵逼,通过朋友坚持不懈的讲解,我终于听懂了,jwt就是登陆token校验嘛 然而事情并不是博主想象的那么简单,在一个艳阳高照,晴空万里的夜晚,博主手贱百度了 ...

  8. tp5 统一返回json格式

    控制器调用 public function json(){ if (request()->isPost()) { return jsonData(1,'转换成功',数据(可不填)); } } 公 ...

  9. 早安打工人! 来把你的.NET程序模块化吧

    嗨朋友们,大家好! 还记得我是谁吗? 对了! 我就是 .NET 打工人 玩双截棍的熊猫 今天呐,我特别要向 写框架 的朋友们,想要写框架 ** 的朋友们,已经有框架** 的朋友问声好! 为什么呢?因为 ...

  10. Linun中配置redis密码

    这里以linux服务器为例,为redis配置密码. 1.第一种方式 (当前这种linux配置redis密码的方法是一种临时的,如果redis重启之后密码就会失效,) (1)首先进入redis,如果没有 ...