上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素单元内构建相应的网格拓扑关系。Marching Cubes算法简单,但是存在一些缺陷:1.模型二义性问题;2.模型特征问题。

  对于二义性问题,以2D情形为例,存在一个单元中同一顶点状态而不同的连接方式(如下图所示)。

图:2D中Marching Cubes算法的二义性问题

  那么对于上图中两种连接方式的不同选择,可能会导致在同一张图像上完全不同的结果(如下图所示),二义性在3D中的直接后果是产生“孔洞”。如果在一个单元中,一条对角线的两端点值大于等值面阈值,另一条对角线的两端点值小于等值面阈值,那么通常会发生这种二义性问题。

图:二义性问题的不同结果

  对于特征问题,由于Marching Cubes算法只计算体素单元的交点坐标信息,并根据这些交点连接的三角面片来构建体素单元内的几何模型,这样假如体素单元内存在几何模型的特征信息(棱边、棱角),但是Marching Cubes算法最终构建出的几何模型会缺少这些特征信息(如下图所示)。

图:左上-交点坐标和法向;右上-Marching Cubes算法;左下-Extended Marching Cubes算法;右下-Dual Contouring算法

  Dual Contouring算法[Ju et al. 2002]也是经典的等值面提取算法,相比Marching Cubes算法,Dual Contouring算法利用Hermite数据(交点的位置和法向)进行等值面构建,它克服了Marching Cubes算法所出现的缺陷。具体算法分两步:

  第一步:利用二次误差函数生成顶点坐标

  对于每个与等值面相交的体素单元,通过最小化二次误差函数来生成一个顶点坐标:

其中pi为交点的位置,ni为交点的法向。

  误差函数可以写成矩阵形式:

其中矩阵A的行向量为交点的法向ni,向量b的每个元素为ni·pi

  极值点可以通过求解正则方程得到:

  但是文章指出这种方式会存在数值不稳定,并提出一种解决方法。基于QR矩阵分解计算正交矩阵Q,使得Q与[A b]相乘为如下上三角矩阵形式:

其中A'为3*3的上三角矩阵,b'为长度为3的向量,r为标量。

  那么误差函数可以变化为:

  然后再根据上式计算极值点。

  第二步:生成网格面片

  对于每一条等值面相交的体素边,那么包含该体素边的4个相邻体素单元内必然都存在顶点,将这4个顶点连接生成1个四边形面片。

  

  文章[Schaefer et al. 2002]详细介绍了Dual Contouring算法的实现细节,通过总结该文可以得到Dual Contouring算法过程如下:

  对于每个与等值面相交的体素单元:

  1. 创建1个4*4的零矩阵用于存放QR矩阵分解的结果;

  2. 对于体素单元的每条相交边,计算交点的位置pi和对应的法向ni

  3. 将向量[ ni.x, ni.y, ni.z, dot(pi,ni) ]添加到4*4的零矩阵底部;

  4. 通过QR矩阵分解得到3*3的上三角矩阵A'和向量b';

  5. 求解线性方程组A'TA'x = (A'Tb' - A'Tb'c) , 其中c是体素单元中所有交点的质心位置;

  6. 将计算得到的偏移量x加上质心位置c即为体素单元中的顶点坐标;

  7. 如果计算得到的顶点坐标位于体素单元之外,那么顶点坐标用质心位置c来代替;

  8. 对于每一条相交的体素边,将其周围4个体素单元内的顶点连接生成1个四边形面片。

 

图:左- Marching Cubes算法;右-Dual Contouring算法

 

图:左- Marching Cubes算法;右-Dual Contouring算法

 

图:box与sphere相交模拟

本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

相关:

水泡动画模拟(Marching Cubes):http://www.cnblogs.com/shushen/p/5542131.html

参考文献:

[1] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite data. ACM Trans. Graph. 21, 3 (July 2002), 339-346.

[2] Scott Schaefer and Joe Warren. Dual contouring: The secret sauce. Technical Report 02-408, Department of Computer Science, Rice University, 2002.

[3] http://users.csc.calpoly.edu/~zwood/teaching/csc572/final15/kpidding/index.html

三维等值面提取算法(Dual Contouring)的更多相关文章

  1. SIFT 特征点提取算法

    SIFT特征点相对于ORB计算速度较慢,在没有GPU加速情况下,无法满足视觉里程计的实时性要求,或者无法运行在手机平台上,但是效果更好,精度更高.在应用时可以择优选取,了解其本质原理的动机是为了自己使 ...

  2. TextRank:关键词提取算法中的PageRank

    很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [ ...

  3. 关键词提取算法TextRank

    很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank. ...

  4. 关键字提取算法TF-IDF和TextRank(python3)————实现TF-IDF并jieba中的TF-IDF对比,使用jieba中的实现TextRank

    关键词:    TF-IDF实现.TextRank.jieba.关键词提取数据来源:    语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据    数据处 ...

  5. PIE SDK水深提取算法

    1.算法功能简介 水深提取算法就是根据输入的水位设为d,dem设为h 这两个数据做一个差值运算,则水深计算公式为d-h;本示例中的是基于洞庭湖提取的水体矢量文件的范围来计算dem和水位25米的差值. ...

  6. 关键词提取算法TF-IDF与TextRank

    一.前言 随着互联网的发展,数据的海量增长使得文本信息的分析与处理需求日益突显,而文本处理工作中关键词提取是基础工作之一. TF-IDF与TextRank是经典的关键词提取算法,需要掌握. 二.TF- ...

  7. 关键词提取算法-TextRank

    今天要介绍的TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. 1.PageRank算法 ...

  8. wav2midi 音乐旋律提取算法 附可执行demo

    前面提及过,音频指纹算法的思路. 也梳理开源了两个比较经典的算法. https://github.com/cpuimage/shazam https://github.com/cpuimage/Aud ...

  9. 摘要提取算法——本质上就是pagerank,选择rank最高的句子作为摘要,如果结合word2vec应该有非常好的效果

    最近需要做一些文本摘要的东西,选取了TextRank(论文参见<TextRank: Bringing Order into Texts>)作为对比方案,该方案可以很方便的使用Python相 ...

随机推荐

  1. 基于CkEditor实现.net在线开发之路(6)vs开发工具配合一起开发

    上一章讲解了利用CKEditor实现了一个简单的列表功能的查询,CKEditor编辑器是由js实现的,js是一门非常强大的语法,但是要用它实现Vs开发工具那样强大编辑器的功能,估计不可能,这就使得CK ...

  2. php图片验证码为什么必须加上ob_clean();才能正常显示。

    ob_clean这个函数的作用就是用来丢弃输出缓冲区中的内容,如果你的网站有许多生成的图片类文件,那么想要访问正确,就要经常清除缓冲区. If you work on an extremely lar ...

  3. python基础之异常处理

    Python3 错误和异常 作为Python初学者,在刚学习Python编程时,经常会看到一些报错信息,在前面我们没有提及,这章节我们会专门介绍. Python有两种错误很容易辨认:语法错误和异常. ...

  4. 使用PowerDesigner设计建造MySQL数据库

    使用PowerDesigner设计建造MySQL数据库 一.使用PowerDesigner制作建库脚本 1.设计CDM(Conceptual Data Model) 2.选择 Tools -> ...

  5. 使用HTML 和CSS 开发商业站点

    第一章HTML 基础1.html 的基本结构?解析:2.HTML 全称Hyper Text Markup Language(超文本标记语言)扩展XML:Extendsible Markup Langu ...

  6. 自定义JsonResult解决 序列化类型 System.Data.Entity.DynamicProxies 的对象时检测到循环引用

    接上篇的问题,给出我自己的解决方案. 同时推荐要学习MVC的可以参考下<ASP.NET MVC4 框架揭秘>. 首先,要自定义JSonResult,就要明白MVC中 JsonResult的 ...

  7. jQuery LayDate 日期控件

    她基于原生JavaScript精心雕琢,兼容了包括IE6在内的所有主流浏览器.她具备优雅的内部代码,良好的性能体验,和完善的皮肤体系,并且完全开源,你可以任意获取开发版源代码,一扫某些传统日期控件的封 ...

  8. 如何在mac上安装docker[记录自己在mac上安装docker的经历]

    0.引子 最近入手了一台mac笔记本,想在本地安装docker. 1.找安装文档. 文档地址:http://www.widuu.com/chinese_docker/installation/mac. ...

  9. mysql NOW,CURRENT_TIMESTAMP,SYSDATE 之间的区别

    这些函数都可以返回当前的系统时间,但它们之间有什么区别呢??大家先看一下以下这个例子. select NOW(), CURRENT_TIMESTAMP(),SYSDATE(); 从上面的例子可以看出返 ...

  10. iOS 怎么设置 UITabBarController 的第n个item为第一响应者?

    iOS 怎么设置 UITabBarController 的第n个item为第一响应者? UITabBarController 里面有个属性:selectedIndex @property(nonato ...