可以用网络流解决这个题。

注意到\(a_i \geqslant 2\),所以当相邻数字要和为质数时,这两个数要一个为奇数,一个为偶数。

所以就先将所有数按奇偶分为两列,其就构成了一个二分图,二分图中和为质数的两个数间连容量为\(1\)的边,表示只能匹配一次。

因为是圆桌,所以一个数要恰好匹配两个数,所以每个点在和源汇点连边时,容量要为\(2\),同时这也保证了每个圆桌中至少有\(3\)个狐狸。

无解的情况就是二分图两个部分大小不是都为\(\frac{n}{2}\)或最大流的结果不为\(n\)。

在跑完最大流后的残量网络中找环即可确定满足要求的分配方案。

\(code:\)

#include<bits/stdc++.h>
#define maxn 400010
#define all 20000
#define inf 1000000000
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,tot,s,t,cnt1,cnt2,ans;
int a[maxn],p1[maxn],p2[maxn],p[maxn],cur[maxn],d[maxn];
bool tag[maxn],vis[maxn];
vector<int> ve[maxn];
struct edge
{
int to,nxt,v;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to,int val)
{
e[++edge_cnt]=(edge){to,head[from],val},head[from]=edge_cnt;
e[++edge_cnt]=(edge){from,head[to],0},head[to]=edge_cnt;
}
bool bfs()
{
queue<int> q;
for(int i=s;i<=t;++i) cur[i]=head[i],d[i]=0;
q.push(s),d[s]=1;
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]||!v) continue;
d[y]=d[x]+1,q.push(y);
}
}
return d[t];
}
int dfs(int x,int lim)
{
if(x==t) return lim;
int res=lim,flow;
for(int &i=cur[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]!=d[x]+1||!v) continue;
if(flow=dfs(y,min(res,v)))
{
res-=flow;
e[i].v-=flow;
e[i^1].v+=flow;
if(!res) break;
}
}
return lim-res;
}
int dinic()
{
int flow,v=0;
while(bfs())
while(flow=dfs(s,inf))
v+=flow;
return v;
}
void init()
{
for(int i=2;i<=all;++i)
{
if(!tag[i]) p[++tot]=i;
for(int j=1;j<=tot;++j)
{
int k=i*p[j];
if(k>all) break;
tag[k]=true;
if(i%p[j]==0) break;
}
}
}
void dfs_ans(int x,int type)
{
vis[x]=true,ve[ans].push_back(x);
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(e[i^type].v||vis[y]) continue;
dfs_ans(y,type^1);
}
}
int main()
{
init(),read(n),t=n+1;
for(int i=1;i<=n;++i)
{
read(a[i]);
if(a[i]&1) p1[++cnt1]=i;
else p2[++cnt2]=i;
}
if(cnt1!=cnt2)
{
puts("Impossible");
return 0;
}
for(int i=1;i<=n/2;++i)
for(int j=1;j<=n/2;++j)
if(!tag[a[p1[i]]+a[p2[j]]])
add(p1[i],p2[j],1);
for(int i=1;i<=n/2;++i) add(s,p1[i],2);
for(int i=1;i<=n/2;++i) add(p2[i],t,2);
if(dinic()!=n)
{
puts("Impossible");
return 0;
}
vis[s]=vis[t]=true;
for(int i=1;i<=n/2;++i)
{
if(vis[p1[i]]) continue;
ans++,dfs_ans(p1[i],0);
}
printf("%d\n",ans);
for(int i=1;i<=ans;++i)
{
printf("%d ",ve[i].size());
for(int j=0;j<ve[i].size();++j)
printf("%d ",ve[i][j]);
puts("");
}
return 0;
}

题解 CF510E 【Fox And Dinner】的更多相关文章

  1. CF510E. Fox And Dinner

    CF510E. Fox And Dinner https://codeforces.com/contest/510 分析: 由于\(a_i>2\), 相邻两个数一定一奇一偶,按奇偶建立二分图. ...

  2. Codeforces Round #290 (Div. 2) E. Fox And Dinner 网络流建模

    E. Fox And Dinner time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. 网络流 I - Fox And Dinner CodeForces - 510E

    Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). T ...

  4. 网络流(最大流)CodeForces 512C:Fox And Dinner

    Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). T ...

  5. [CF#290 Div.1 C]Fox And Dinner(最大流)

    题目:http://codeforces.com/contest/512/problem/C 题目大意:给你若干个数,让你分成k组,每组围成一个圆,使得相邻两个数和均为素数,且每组人数应>=3个 ...

  6. CodeForces Round #290 Fox And Dinner

    而是Div2的最后一题,当时打比赛的时候还不会最大流.自己能够把它写出来然后1A还是很开心的. 题意: 有n个不小于2的整数,现在要把他们分成若干个圈.在每个圈中,数字的个数不少于3个,而且相邻的两个 ...

  7. codeforces 510E. Fox And Dinner 网络流

    题目链接 给出n个人, 以及每个人的值, 要求他们坐在一些桌子上面, 每个桌子如果有人坐, 就必须做3个人以上. 并且相邻的两个人的值加起来必须是素数.每个人的值都>=2. 由大于等于2这个条件 ...

  8. CodeForces 510E Fox And Dinner

    网络流. 原点到偶数连边,容量为2, 奇数到汇点连边,容量为2, 偶数到与之能凑成素数的奇数连边,容量为1 如果奇数个数不等于偶数个数,输出不可能 如果原点到偶数的边不满流,输出不可能 剩下的情况有解 ...

  9. Codeforces 510 E. Fox And Dinner

    题目链接:http://codeforces.com/problemset/problem/510/E 乍一看和那啥魔术球问题有点神似啊/XD 其实是不一样的. 解决这道问题的关键在于发现若是相邻的两 ...

随机推荐

  1. Wireshark论证TCP3次握手的过程

    wireshark过滤条件:ip.addr == 120.79.36.180 千万别写成 ip.dst == 120.79.36.180 ,这样子就看不到服务器给我们返回的包了 此时,在浏览器输入12 ...

  2. 使用word2016发有代码高亮的博客

    复制使用notepad++,eclipse这类有高亮的编辑器编写的代码到word中是默认有高亮的. 测试有没有代码高亮(eclipse代码): package p_day1; public class ...

  3. springboot @Cacheable 基本使用

    加入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>sp ...

  4. python将指定目录下的所有文件夹用随机数重命名

    我的目的在于打乱数据顺序,便于GAN训练: import random import os path = 'hunhe_7' #目标文件夹 listname = os.listdir(path) #遍 ...

  5. Nginx配置upstream实现负载均衡1

    如果Nginx没有仅仅只能代理一台服务器的话,那它也不可能像今天这么火,Nginx可以配置代理多台服务器,当一台服务器宕机之后,仍能保持系统可用.具体配置过程如下: 1. 在http节点下,添加ups ...

  6. TypeScript学习——数组、元组、接口(2)

    数组 数组类型注解 const numberArr: (number | string)[] = [1, '2', 3]; //既可以是number 也可以是string const stringAr ...

  7. 谈谈如何绕过 TinyPNG 对上传图片数量的限制

    前端er, 又称为切图仔,平时经常需要用 PSD 导出 PNG 或 JPG,但是导出来的的图片一般比较大,往往需要用一些其他工具压缩后再发布到生产环境. 以前常用的做法是,使用 image-webpa ...

  8. Java编程资料

    Java相关免费编程书籍推荐(都是PDF版) 编程进阶 2017年9月11日 IDE IntelliJ IDEA 简体中文专题教程 https://github.com/judasn/IntelliJ ...

  9. 使用vs2019加.net core 对WeiApi的创建

    vs2019创建webapi 1.创建新的项目 2.选择.NET CORE的ASP .NET CORE WEB应用程序 3.定义项目名称和存放地点 4.选择API创建项目 5.删除原本的无用的类 6. ...

  10. 什么是X-UA-Compatible?X-UA-Compatible的作用

    代码 <meta http-eqiv="X-UA-Compatible" content="ie=edge"> 什么是X-UA-Compatible ...