【noi 2.6_9265】取数游戏(DP)
题意:从自然数1到N中不取相邻2数地取走任意个数,问方案数。
解法:f[i][1]表示在前i个数中选了第i个的方案数,f[i][0]表示没有选第i个。f[i][1]=f[i-1][0]; f[i][0]=f[i-1][1]+f[i-1][0]
而若简化方程式,用f[i]表示从前i个中取数的方案数。便是f[i]=f[i-2]+f[i-1],斐波拉契的递推式。
推导过程如下:
若用x,y,f[i-2]表示f[i-2][1],f[i-2][1],f[i-2][1]+f[i-2][0],xx,yy,f[i-1]表示f[i-1][]的,xxx,yyy,f[i]表示f[i][]的:
f[i-2]=x+y;
xx=y; yy=x+y; f[i-1]=x+2*y;
xxx=yy=x+y; yyy=xx+yy=x+2*y; f[i]=2*x+3*y=f[i-2]+f[i-1]
以上就可以理性逻辑推导出来f[i]=f[i-2]+f[i-1]。
而在稍微感性一点的理解上,我是这样想的:
对于f[i],不取a[i]则对a[i-1]随意(可取可不取),便为f[i-1]的方案数;
取a[i]则不能取a[i-1],不是f[i-1],而对于a[i-2]随意(可取可不取),便为f[i-2]的方案数。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 using namespace std;
5
6 long long f[55];
7 int main()
8 {
9 int n;
10 scanf("%d",&n);
11 f[1]=2,f[2]=3;
12 for (int i=3;i<=n;i++)
13 f[i]=f[i-2]+f[i-1];
14 printf("%lld\n",f[n]);
15 return 0;
16 }
注意——斐波拉契数列第50项已经超了int范围,用long long输出要用%lld。
【noi 2.6_9265】取数游戏(DP)的更多相关文章
- [LuoguP1005]矩阵取数游戏 (DP+高精度)
题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...
- [P1005][NOIP2007] 矩阵取数游戏 (DP+高精)
我不会高精…… 也不会DP…… 这道题即考高精又考DP…… 我要死了 给一个不是高精的代码(当然不能满分) #include<cstdio> #include<iostream> ...
- 1166 矩阵取数游戏[区间dp+高精度]
1166 矩阵取数游戏 2007年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description [ ...
- BZOJ 1978: [BeiJing2010]取数游戏 game( dp )
dp(x)表示前x个的最大值, Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...
- 计蒜客 取数游戏 博弈+dp
题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数, ...
- P1005 矩阵取数游戏 区间dp 高精度
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n ...
- P1005 矩阵取数游戏[区间dp]
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的\(m*n\)的矩阵,矩阵中的每个元素\(a_{i,j}\)均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n个.经过m次后 ...
- 矩阵取数游戏 2007年NOIP全国联赛提高组(dp+高精)
矩阵取数游戏 2007年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description [问题描述]帅帅经常跟 ...
- NOIP2007 矩阵取数游戏
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...
- 矩阵取数游戏 NOIP 2007
2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...
随机推荐
- Eclipse-Che 安装(Centos)
安装docker,然后执行:docker run -it --rm -v /var/run/docker.sock:/var/run/docker.sock -v /home/cheData:/dat ...
- Nginx基础知识学习(安装/进程模型/事件处理机制/详细配置/定时切割日志)
一.Linux下Nginx的安装 1.去官网 http://nginx.org/download/下载对应的Nginx安装包,推荐使用稳定版本. 2.上传Nginx到Linux服务器. 3.安装依赖环 ...
- Docker构建Python Web环境
出于寻找Docker对Python相关项目部署的学习,找到腾讯课堂NEXT公开课中[Docker构建Python Web环境]的课程,本文对其进行内容梳理及知识点汇总. 该课程总计6小时左右,是个适合 ...
- i春秋新春战疫—web—简单的招聘系统
打开靶机 打开后看到登录界面 利用万能密码,以admin身份登录 登录成功后看到如下界面 在Blank Page界面内发现注入点,抓包 保存在sqlmap目录下test.txt文件夹,使用sqlmap ...
- 通过LOGMNR查找程式带入的实际值
生产库中出现了大量的锁表,需要得到当时程式执行的SQL以及其带入的值 1.查看SQL SELECT SQL_ID FROM V$SESSION WHERE SID=(SELECT FINAL_BLOC ...
- 腾讯云COS对象存储占据数据容灾C位
说到公有云容灾,大家首先想到的是云上数据备份. 然而,随着企业核心业务逐渐从线下迁移到云上,客户提出了更高的要求.如何确保云上业务的高可用.数据的高可靠,这对云厂商提出了新的挑战. 腾讯云作为全球领先 ...
- VPS下环境漏洞部署
No.1 声明 1.由于本环节运行在公网,如何同样复现情况,复现成功后请立即关闭环境! 2.本环境仅用于漏洞复现! No.2 安装docker curl -s https://get.docker.c ...
- 对于Update Function Modules的一点说明
To be able to call a function module in an update work process, you must flag it in the Function Bui ...
- java 不利用第三个变量的情况下将值互换
package com.zcj.eg001; public class VarChange { public static void main(String[] args) { int a = 10; ...
- 前端知识(一)04 Vue.js入门-谷粒学院
目录 一.介绍 1.Vue.js 是什么 2.初识Vue.js 二.基本语法 1.基本数据渲染和指令 2.双向数据绑定 3.事件 4.修饰符 5.条件渲染 6.列表渲染 7.实例生命周期 一.介绍 1 ...