题意:从自然数1到N中不取相邻2数地取走任意个数,问方案数。

解法:f[i][1]表示在前i个数中选了第i个的方案数,f[i][0]表示没有选第i个。f[i][1]=f[i-1][0];  f[i][0]=f[i-1][1]+f[i-1][0]

而若简化方程式,用f[i]表示从前i个中取数的方案数。便是f[i]=f[i-2]+f[i-1],斐波拉契的递推式。
推导过程如下:
若用x,y,f[i-2]表示f[i-2][1],f[i-2][1],f[i-2][1]+f[i-2][0],xx,yy,f[i-1]表示f[i-1][]的,xxx,yyy,f[i]表示f[i][]的:
                                                        f[i-2]=x+y;
xx=y;             yy=x+y;                     f[i-1]=x+2*y;
xxx=yy=x+y;     yyy=xx+yy=x+2*y;     f[i]=2*x+3*y=f[i-2]+f[i-1]
以上就可以理性逻辑推导出来f[i]=f[i-2]+f[i-1]。

而在稍微感性一点的理解上,我是这样想的:
对于f[i],不取a[i]则对a[i-1]随意(可取可不取),便为f[i-1]的方案数;
取a[i]则不能取a[i-1],不是f[i-1],而对于a[i-2]随意(可取可不取),便为f[i-2]的方案数。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 using namespace std;
5
6 long long f[55];
7 int main()
8 {
9 int n;
10 scanf("%d",&n);
11 f[1]=2,f[2]=3;
12 for (int i=3;i<=n;i++)
13 f[i]=f[i-2]+f[i-1];
14 printf("%lld\n",f[n]);
15 return 0;
16 }

注意——斐波拉契数列第50项已经超了int范围,用long long输出要用%lld。

【noi 2.6_9265】取数游戏(DP)的更多相关文章

  1. [LuoguP1005]矩阵取数游戏 (DP+高精度)

    题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...

  2. [P1005][NOIP2007] 矩阵取数游戏 (DP+高精)

    我不会高精…… 也不会DP…… 这道题即考高精又考DP…… 我要死了 给一个不是高精的代码(当然不能满分) #include<cstdio> #include<iostream> ...

  3. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

  4. BZOJ 1978: [BeiJing2010]取数游戏 game( dp )

    dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...

  5. 计蒜客 取数游戏 博弈+dp

    题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数, ...

  6. P1005 矩阵取数游戏 区间dp 高精度

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j​均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n ...

  7. P1005 矩阵取数游戏[区间dp]

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的\(m*n\)的矩阵,矩阵中的每个元素\(a_{i,j}\)均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n个.经过m次后 ...

  8. 矩阵取数游戏 2007年NOIP全国联赛提高组(dp+高精)

    矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description [问题描述]帅帅经常跟 ...

  9. NOIP2007 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  10. 矩阵取数游戏 NOIP 2007

    2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...

随机推荐

  1. Centos7 Nginx+PHP7 配置

    Centos7 Nginx+PHP7 配置 内容: 源码编译安装Nginx和PHP 配置PHP和Nginx,实现Nginx转发到PHP处理 测试 设置Nginx.PHP开机自启 安装的版本: Ngin ...

  2. mysql中更改字段属性实际上都做了哪些操作

     mysql> set profiling=1; Query OK, 0 rows affected (0.00 sec) mysql> alter table test modify n ...

  3. Entity与Entity之间的相互转化

    一.两个实体类的属性名称对应之间的转化 1.两个实体类 public class Entity1 { private Integer id; private String name; private ...

  4. 1.5V转3.3V升压电路图和1.5V转3.3V的电源芯片

    1.5V转3.3V的电路图需要材料:PW5100芯片,2个贴片电容,1个贴片电感.即可组成一个DC-DC同步升压高效率电路图,可提供稳定的3.3V输出电压. 1.5V转3.3V的电源芯片 1.5V转3 ...

  5. JWT令牌简介及demo

    一.访问令牌的类型 二.JWT令牌 1.什么是JWT令牌 ​ JWT是JSON Web Token的缩写,即JSON Web令牌,是一种自包含令牌. JWT的使用场景: 一种情况是webapi,类似之 ...

  6. 处理 K8S Orphaned pod found - but volume paths are still present on disk 孤儿pod

    问题概述 查看kubelet或/var/log/messages日志一直包错,发现是孤儿pod,是由于其pod被删除后存储路径还保存在磁盘. 报错如下 [root@node5 ~]# journalc ...

  7. 查看内核打印信息指令dmesg

    linux系统启动的时候打印的的信息非常重要,有时候需要看这些信息但是又不想重启,可以用dmesg这条指令.

  8. 备份和还原Windows DHCP服务器

    在本教程中,您将学习如何使用DHCP控制台和PowerShell备份和还原Windows DHCP服务器. 您是否曾经经历过DHCP服务器崩溃或故障?在设备开始重新启动之前,一切都会平静. 用户将抱怨 ...

  9. Flutter--Flutter中Widget、App的生命周期

    前言 在App的开发过程中,我们通常都需要了解App以及各个页面的生命周期,方便我们在App进入前台时启动一些任务,在进入后台后暂停一些任务.同时,各个页面的生命周期也很重要,每个页面消失时要做一些内 ...

  10. 阿里云 CentOS7中搭建FTP服务器

    1配置 vsftpd-3.0.2-27.el7.x86_64 阿里云 centos 7.0 2 ftp工作模式 2.1 ftp通道 ftp工作会启动两个通道: 控制通道,数据通道 在ftp协议中,控制 ...