Problem Description
There is a path graph G=(V,E) with n vertices.
Vertices are numbered from 1 to n and
there is an edge with unit length between i and i+1 (1≤i<n).
To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.
 

Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) --
the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n),
separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines,
each contains two integers si and ti (1≤si,ti≤n),
denoting a query.

The sum of values of m in
all test cases doesn't exceed 106.
 

Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7),
where zi is
the answer for i-th
query.
 

Sample Input

1
10 2
2 4 5 7 8 10
1 5
3 1
 

Sample Output

7

题意:给你一条n个点组成的链,相邻两点的距离为1,再给你三条边,这三条边的端点都是链上的点,且每一条的距离为1。有m个询问,问你对于每两个点,从一个端点到另一个端点的最近距离是多少。

思路:可以先初始化3条边中6个点两两之间的最短距离,这个可以用floyd做,那么对于每一个询问,两个点x1,x2的最短距离为不经过任何点,或者经过3条边中的某些边,又因为我们已经初始化出3条边中任意两个点的最短距离,所以我们只要枚举a,b,即x1到a,a到b,再b到x2的最近距离。这一题floyd初始化时关键,如果每次直接8个点floyd时间复杂度就爆了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 1000000007
#define pi acos(-1.0)
#define MOD 1000000007
int dist[10][10];
void floyd()
{
int i,j,k;
for(k=1;k<=6;k++){
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
if(dist[i][j]>dist[i][k]+dist[k][j]){
dist[i][j]=dist[i][k]+dist[k][j];
} } } }
} int main()
{
int n,m,i,j,T,k;
int x[10];
int a1,b1,a2,b2,a3,b3;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
scanf("%d%d%d%d%d%d",&x[1],&x[2],&x[3],&x[4],&x[5],&x[6]);
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
dist[i][j]=abs(x[i]-x[j]);
}
}
dist[1][2]=dist[2][1]=min(dist[1][2],1);
dist[3][4]=dist[4][3]=min(dist[3][4],1);
dist[5][6]=dist[6][5]=min(dist[5][6],1);
floyd(); ll sum=0;
for(k=1;k<=m;k++){
scanf("%d%d",&x[7],&x[8]);
int ans=abs(x[7]-x[8]);
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
ans=min(ans,abs(x[7]-x[i] )+abs(x[8]-x[j])+dist[i][j] );
ans=min(ans,abs(x[7]-x[j] )+abs(x[8]-x[i])+dist[i][j] ); }
} sum=(sum+(ll)ans*(ll)k)%MOD;
//printf("%d\n",floyd()); }
printf("%lld\n",sum); }
return 0; }

hdu5365Shortest Path (floyd)的更多相关文章

  1. HDU3631:Shortest Path(Floyd)

    Problem Description When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in ...

  2. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  3. [ZOJ2760]How Many Shortest Path(floyd+最大流)

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...

  4. sdut1282Find the Path (floyd变形)

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1282 感觉这题就比较有意思了 ,虽说是看了别人 ...

  5. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  6. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. [matlab] 22.matlab图论实例 最短路问题与最小生成树 (转载)

    最短路问题之 Floyd 某公司在六个城市 c1c1,c2c2,….,c6c6 中有分公司,从 cici 到 cjcj 的直接航程票价记在下述矩阵的 (ii,jj) 位置上. (∞∞表示无直接航路), ...

  9. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

随机推荐

  1. 【原创】X86_64汇编、寄存器、内嵌汇编

    整理的X86_64/X86汇编.寄存器.C内嵌汇编笔记,主要用于查阅使用. 目录 一.汇编语言 二.指令 数据传输指令 栈操作指令 push pop 运算指令 位操作 比较操作指令 标志寄存器 流控制 ...

  2. zabbix 监控的数据

    /usr/local/zabbix/bin/zabbix_sender --zabbix-server 192.168.1.10 --port 10051 --input-file /var/log/ ...

  3. 翻译 - ASP.NET Core 托管和部署 - 在 Linux 上使用 Nginx 托管 ASP.NET Core 网站

    翻译自 https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-5.0 本文介 ...

  4. DDIC_TYPELENG_INCONSISTENT错误的解决办法

    当执行某个TCODE,例如SM66,出现类似如下的dump界面 大概意思就是说是ddic种的某个数据类型有问题,可能是数据结构,可能是数据元素或者是表等等 通过查阅资料了解到,对于note122290 ...

  5. (数据科学学习手札104)Python+Dash快速web应用开发——回调交互篇(上)

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...

  6. 基于.NET Core的优秀开源项目合集

    开源项目非常适合入门,并且可以作为体系结构参考的好资源, GitHub中有几个开源的.NET Core项目,这些项目将帮助您使用不同类型的体系结构和编码模式来深入学习 .NET Core技术, 本文列 ...

  7. 通过封装openpyxl模块实现自己的Excel操作类

    """ excel类封装需要提供以下功能: 1.选择表单功能 2.读取一个单元格的数据功能 3.读取一行数据功能 4.读取表单中所有数据功能 5.往单元格中写入数据功能 ...

  8. (09)-Python3之--类的三大特性(封装、继承、多态)

    1.封装 封装,就是只能在类的内部访问,外部访问属性或方法会报异常,python中的封装很简单,只要在属性前或者方法名前加上两个下划线就可以,如self.__name,def __eat(self)这 ...

  9. 抽取一部分服务端做BFF(Backend For Frontend服务于前端的后端)

    Flutter+Serverless端到端研发架构实践 · 语雀 https://www.yuque.com/xytech/flutter/kdk9xc 2019-12-19 13:14 作者:闲鱼技 ...

  10. 一次I/O问题引发的P0重大故障[改版重推] 原创 二马读书 二马读书 8月16日 这是前段时间发的一篇文章,很多读者反馈,文章没有揭示故障发生的详细

    一次I/O问题引发的P0重大故障[改版重推] 原创 二马读书 二马读书 8月16日 这是前段时间发的一篇文章,很多读者反馈,文章没有揭示故障发生的详细