bzoj3892[Usaco2014 Dec]Marathon

题意:

在二维平面上有N个点,从(x1,y1)到(x2,y2)的代价为|x1-x2|+|y1-y2|。求从1号点出发,按从1到N的顺序依次到达每个点的最小总代价。你有K次机会可以跳过某个点,不允许跳过1号点或N号点。n≤500。
题解:
dp。f[i][j]表示当前在i个点,剩j次,则f[i][j]=min(f[i+1][j]+abs(x[i+1]-x[i])+abs(y[i+1]-y[i]),f[i+k+1][j-k]),i+k+1≤n,k≤j。
代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define inc(i,j,k) for(int i=j;i<=k;i++)
#define maxn 510
using namespace std; inline int read(){
char ch=getchar(); int f=,x=;
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return f*x;
}
int n,k,x[maxn],y[maxn],dp[maxn][maxn];
int dfs(int a,int b){
if(a==n)return ; if(dp[a][b]!=-)return dp[a][b];
dp[a][b]=dfs(a+,b)+abs(x[a]-x[a+])+abs(y[a]-y[a+]);
inc(i,,min(b,n-a-))dp[a][b]=min(dp[a][b],dfs(a+i+,b-i)+abs(x[a]-x[a+i+])+abs(y[a]-y[a+i+]));
return dp[a][b];
}
int main(){
n=read(); k=read(); inc(i,,n)x[i]=read(),y[i]=read(); memset(dp,-,sizeof(dp));
printf("%d",dfs(,k)); return ;
}

20160909

bzoj3892[Usaco2014 Dec]Marathon*的更多相关文章

  1. 3892: [Usaco2014 Dec]Marathon

    3892: [Usaco2014 Dec]Marathon Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 169  Solved: 100[Submi ...

  2. 3893: [Usaco2014 Dec]Cow Jog

    3893: [Usaco2014 Dec]Cow Jog Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 174  Solved: 87[Submit] ...

  3. 3891: [Usaco2014 Dec]Piggy Back

    3891: [Usaco2014 Dec]Piggy Back Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 116  Solved: 92[Subm ...

  4. [bzoj3893][Usaco2014 Dec]Cow Jog_暴力

    Cow Jog bzoj-3893 Usaco-2014 Dec 题目大意:题目链接. 注释:略. 想法: 先按照坐标排序. 我们发现每个牛只会被后面的牛影响. 所以我们考虑逆向枚举. 记录一下i+1 ...

  5. bzoj3891[Usaco2014 Dec]Piggy Back*

    bzoj3891[Usaco2014 Dec]Piggy Back 题意: 给定一个N个点M条边的无向图,其中Bessie在1号点,Elsie在2号点,它们的目的地为N号点.Bessie每经过一条边需 ...

  6. Bzoj3893 [Usaco2014 Dec]Cow Jog

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 302  Solved: 157 Description The cows are out exerci ...

  7. BZOJ3825 : [Usaco2014 Nov]Marathon

    不跳过任何点的路程=dis(l,l+1)+dis(l+1,l+2)+...+dis(r-2,r-1)+dis(r-1,r) 要跳过一个点i,则要最小化dis(i,i+2)-dis(i,i+1)-dis ...

  8. bzoj 3824: [Usaco2014 Dec]Guard Mark【状压dp】

    设f[s]为已经从上到下叠了状态为s的牛的最大稳定度,转移的话枚举没有在集合里并且强壮度>=当前集合牛重量和的用min(f[s],当前放进去的牛还能承受多种)来更新,高度的话直接看是否有合法集合 ...

  9. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

随机推荐

  1. 消息队列——Kafka基本使用及原理分析

    文章目录 一.什么是Kafka 二.Kafka的基本使用 1. 单机环境搭建及命令行的基本使用 2. 集群搭建 3. Java API的基本使用 三.Kafka原理浅析 1. topic和partit ...

  2. @Inherited 注解的作用

    @Inherited 用于放在注解上,例如 @Inherited @Documented @Target(ElementType.TYPE) public @interface InheritedAn ...

  3. python 3内置函数

    2018-07-14 enumerate() 用于指定下标 例: m = ['a','b','c'] for i,j in enumerate(m,1): print(i,j) 输出: 1 a 2 b ...

  4. python三大神器之fabric

    Fabric Fabric是一个python的远程执行shell的库,同时它也是一个命令行工具.它提供了丰富的同 SSH 交互的接口,可以用来在本地或远程机器上自动化.流水化地执行 Shell 命令. ...

  5. 版本管理工具(git)

    Git是一个开源的分布式版本控制系统 工作区: 电脑目录中,git_test文件夹就是一个工作区. 版本库: 在进行git操作的时候,会生成一个隐藏目录.git,这是git的版本库,其中stage(或 ...

  6. JVM源码分析之深入分析Object类finalize()方法的实现原理

      原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 ​“365篇原创计划”第十篇. 今天呢!灯塔君跟大家讲: 深入分析Object类finalize()方法的实现原理 finalize 如果 ...

  7. Golang从合并链表聊递归

    从合并链表聊递归 递归是工程师最常见的一种解决问题的方式,但是有时候不容易真正掌握.有人说是看起来很简单,自己写起来会费点劲. 最著名的例子就是斐波那契数列(Fibonacci sequence),通 ...

  8. HTML5(二)音频视频画布

    HTML5 Audio(音频) 定义和用法 <audio src="someaudio.wav" controls="controls"> 您的浏览 ...

  9. Linux 相关学习内容(不定期更新)

    Linux 主要目录 / 根目录,在 linux 下有且只有一个根目录,所有的东西都是从这里开始 /bin 可执行二进制文件的目录,如常用的命令,ls, tar, mv, cat.. /boot 放置 ...

  10. 华为云MVP熊保松谈物联网开发:华为云IoT是首选,小熊派是神器

    摘要:在AI.5G的技术驱动下,物联网行业的发展愈加如火如荼,开发者在技术的快速更迭间,也得乘风破浪跟上新技术的节奏. 在AI.5G的技术驱动下,物联网行业的发展愈加如火如荼,开发者在技术的快速更迭间 ...