关联 (Correlation)

关联图表用于可视化2个或更多变量之间的关系。 也就是说,一个变量如何相对于另一个变化。

散点图(Scatter plot)

散点图是用于研究两个变量之间关系的经典的和基本的图表。 如果数据中有多个组,则可能需要以不同颜色可视化每个组。 在 matplotlib 中,您可以使用 plt.scatterplot() 方便地执行此操作。

导入需要的模块库

import numpy as np              # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库

设定图像各种属性

large = 22; med = 16; small = 12
params = {'axes.titlesize': large, #子图上的标题字体大小
'legend.fontsize': med, #图例的字体大小
'figure.figsize': (16, 10), #图像的画布大小
'axes.labelsize': med, #标签的字体大小
'xtick.labelsize': med, #x轴上的标尺的字体大小
'ytick.labelsize': med, #y轴上的标尺的字体大小
'figure.titlesize': large} #整个画布的标题字体大小
plt.rcParams.update(params) #更新默认属性
plt.style.use('seaborn-whitegrid') #设定整体风格
sns.set_style("white") #设定整体背景风格

程序代码

# step1:导入数据

midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

# step2:准备数据和颜色

# step2:准备数据和颜色
categories = np.unique(midwest['category']) # 使用np.unique对“midwest['category']” 去重
colors = [plt.cm.tab10(i/float(len(categories) - 1)) for i in range(len(categories))] # 使用列表推导式,建立colors列表。

# step3:建立画布

# step3:建立画布

plt.figure(figsize = (16, 10),     # 绘图尺寸,默认为(6.4,4.8)
dpi = 80, # 图像的分辨率,默认dpi为100
facecolor = 'w', # 背景颜色,默认为白色
edgecolor = 'k' )

# step4:绘图

# step4:绘图
# 使用函数enumerate:将可遍历的数据对象组合为一个索引序列,同时列出数据和数据索引
for i, category in enumerate(categories): plt.scatter("area", "poptotal", # 横坐标名称,纵坐标名称
data = midwest.loc[midwest.category == category,:], # 程序会自动的从data提取data中"area"和"poptotal"数据
s = 20, # 数据点尺寸
c = np.array(colors[i]).reshape(1, -1), # 设定颜色,若不转换为二维,会出现报错
label = str(category)) # 设定标签名称

# step5:装饰

# step5:装饰

plt.gca().set(xlim = (0, 0.12), ylim=(0, 80000))   # 设定横轴坐标的范围(元组)
plt.xticks(fontsize = 12) # 设定x坐标轴上字体的大小
plt.yticks(fontsize = 12) # 设定y坐标轴上字体的大小
plt.ylabel('Population', fontsize = 22) # 设定y坐标轴上的标题和字体大小
plt.xlabel("Area", fontsize = 22) # 设定x坐标轴上的标题和字体大小
plt.title("Scatterplot of Midwest Area vs Population", fontsize = 22) # 设定整个图像的标题和字体大小
plt.legend(fontsize = 12) # 设定图例的字体大小
plt.show()

散点图

总结

创建画布

  • plt.figure()

参数说明

  • figsize__画布尺寸
  • dpi__分辨率
  • facecolor__背景颜色,默认为白色
  • edgecolor__边框颜色,默认为白色

绘制散点图函数

  • plt.scatter()

参数说明

  • x__指定x轴数据(或者输入x轴数据名称)
  • y__指定y轴数据(或者输入y轴数据名称)
  • s__点的尺寸
  • alpha__点的透明度
  • linewidths__散点边框点的宽度
  • edgecolors__散点边框的颜色
  • cmap__指定散点的颜色映射,会使用不同颜色来区分散点的值

光谱

  • plt.cm.tab10()

plt.cm.tab10()

enumerate

  • enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
  • 可用[*]打开惰性数据

列表推导式

  • 列表推导式(又称列表解析式)提供了一种简明扼要的方法来创建列表。
  • 它的结构是在一个中括号里包含一个表达式,然后是一个for语句,然后是 0 个或多个 for 或者 if 语句。那个表达式可以是任意的,意思是你可以在列表中放入任意类型的对象。返回结果将是一个新的列表,在这个以 if 和 for 语句为上下文的表达式运行完成之后产生。
  • 列表推导式的执行顺序:各语句之间是嵌套关系,左边第二个语句是最外层,依次往右进一层,左边第一条语句是最后一层。
  • colors = [plt.cm.tab10(i/float(len(categories) - 1)) for i in range(len(categories))]

数据可视化实例(三): 散点图(pandas,matplotlib,numpy)的更多相关文章

  1. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  2. Echarts数据可视化series-effectscatter特效散点图,开发全解+完美注释

    全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...

  3. [译]学习IPython进行交互式计算和数据可视化(三)

    第二章 在本章中,我们将详细学习IPython相对以Python控制台带来的多种改进.特别的,我们将会进行下面的几个任务: 从IPython中使用系统shell以在shell和Python之间进行强大 ...

  4. 数据可视化实例(六): 带线性回归最佳拟合线的散点图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter3/chapter3 如果你想了解两个变量如何相互改变,那么最佳拟合线就是常用的方法. 下图显示了数据中 ...

  5. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  6. 数据可视化实例(五): 气泡图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter2/chapter2 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也 ...

  7. 数据可视化实例(八): 边缘直方图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter6/chapter6 边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y ...

  8. 数据可视化实例(十三): 发散型文本 (matplotlib,pandas)

    偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) ...

  9. 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...

随机推荐

  1. Linux dd工具磁盘读写测试分析

    话说,Linux 自带的dd工具测试硬盘读写速度只能提供一个大概的测试结果,而且是连续IO 而不是随机IO ,理论上文件规模越大,测试结果越准确.理论上bs越大,所测得性能越高. 上句来自网上,是不是 ...

  2. Javascript模块化编程(转自阮一峰的网络日志)(备忘)

    http://www.ruanyifeng.com/blog/2012/10/javascript_module.html

  3. 不适合使用Mycat的场景

    1.非分片字段查询 Mycat中的路由结果是通过分片字段和分片方法来确定的.例如下图中的一个Mycat分库方案: 根据 tt_waybill 表的 id 字段来进行分片 分片方法为 id 值取 3 的 ...

  4. 伪造随机的User-Agent

    写好爬虫的原则只有一条: 就是让你的抓取行为和用户访问网站的真实行为尽量一致 1.伪造UA字符串,每次请求都使用随机生成的UA 为了减少复杂度,随机生成UA的功能通过第三方模块库fake-userag ...

  5. Python变量和注释

    1.变量与变量的作用: (1)什么是变量:变量源于数学,是计算机语言中能存储计算结果或能表示值抽象概念.变量可以通过变量名访问.在指令式语言中,变量通常是可变的:在Python中变量名必须是大小写英文 ...

  6. python基础--程序交互、格式化输出、流程控制、break、continue

    在此申明一下,博客参照了https://www.cnblogs.com/jin-xin/,自己做了部分的改动 (1) 程序交互 #!/usr/bin/env python # -*- coding: ...

  7. Java 中的线程 thread

    一.问:线程有哪些状态? new, runnable, running, waiting, dead 线程状态间的流转 二.问:线程实现方式? 实现 Runnable 接口,然后new Thread, ...

  8. Java 14带来了许多新功能

    本文是作者翻译自java magazine的文章,我也将回持续的关注java的最新消息,即时和大家分享.如有翻译不准确的地方,欢迎大家留言,我将第一时间修改.   Java 14包含比前两个发行版更多 ...

  9. [ 头皮发麻 A1 ] 队内赛3 2020 Ateneo de Manila University DISCS PrO HS Division

    都是英语阅读题 但是本菜鸡就过了一题,直接自闭mmp明天开始起床一版题 传送门 B.Riana and the Blind Date 0是闰年?惊了 后来才知道整除被除数可以为0 闰年的计算方法 \( ...

  10. 微信小程序 自定义省市选择器

    1.把省市数据放在city.js中,city.js放在until目录下 // city.js module.exports = { "province": [ { "ti ...