关联 (Correlation)

关联图表用于可视化2个或更多变量之间的关系。 也就是说,一个变量如何相对于另一个变化。

散点图(Scatter plot)

散点图是用于研究两个变量之间关系的经典的和基本的图表。 如果数据中有多个组,则可能需要以不同颜色可视化每个组。 在 matplotlib 中,您可以使用 plt.scatterplot() 方便地执行此操作。

导入需要的模块库

import numpy as np              # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库

设定图像各种属性

large = 22; med = 16; small = 12
params = {'axes.titlesize': large, #子图上的标题字体大小
'legend.fontsize': med, #图例的字体大小
'figure.figsize': (16, 10), #图像的画布大小
'axes.labelsize': med, #标签的字体大小
'xtick.labelsize': med, #x轴上的标尺的字体大小
'ytick.labelsize': med, #y轴上的标尺的字体大小
'figure.titlesize': large} #整个画布的标题字体大小
plt.rcParams.update(params) #更新默认属性
plt.style.use('seaborn-whitegrid') #设定整体风格
sns.set_style("white") #设定整体背景风格

程序代码

# step1:导入数据

midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

# step2:准备数据和颜色

# step2:准备数据和颜色
categories = np.unique(midwest['category']) # 使用np.unique对“midwest['category']” 去重
colors = [plt.cm.tab10(i/float(len(categories) - 1)) for i in range(len(categories))] # 使用列表推导式,建立colors列表。

# step3:建立画布

# step3:建立画布

plt.figure(figsize = (16, 10),     # 绘图尺寸,默认为(6.4,4.8)
dpi = 80, # 图像的分辨率,默认dpi为100
facecolor = 'w', # 背景颜色,默认为白色
edgecolor = 'k' )

# step4:绘图

# step4:绘图
# 使用函数enumerate:将可遍历的数据对象组合为一个索引序列,同时列出数据和数据索引
for i, category in enumerate(categories): plt.scatter("area", "poptotal", # 横坐标名称,纵坐标名称
data = midwest.loc[midwest.category == category,:], # 程序会自动的从data提取data中"area"和"poptotal"数据
s = 20, # 数据点尺寸
c = np.array(colors[i]).reshape(1, -1), # 设定颜色,若不转换为二维,会出现报错
label = str(category)) # 设定标签名称

# step5:装饰

# step5:装饰

plt.gca().set(xlim = (0, 0.12), ylim=(0, 80000))   # 设定横轴坐标的范围(元组)
plt.xticks(fontsize = 12) # 设定x坐标轴上字体的大小
plt.yticks(fontsize = 12) # 设定y坐标轴上字体的大小
plt.ylabel('Population', fontsize = 22) # 设定y坐标轴上的标题和字体大小
plt.xlabel("Area", fontsize = 22) # 设定x坐标轴上的标题和字体大小
plt.title("Scatterplot of Midwest Area vs Population", fontsize = 22) # 设定整个图像的标题和字体大小
plt.legend(fontsize = 12) # 设定图例的字体大小
plt.show()

散点图

总结

创建画布

  • plt.figure()

参数说明

  • figsize__画布尺寸
  • dpi__分辨率
  • facecolor__背景颜色,默认为白色
  • edgecolor__边框颜色,默认为白色

绘制散点图函数

  • plt.scatter()

参数说明

  • x__指定x轴数据(或者输入x轴数据名称)
  • y__指定y轴数据(或者输入y轴数据名称)
  • s__点的尺寸
  • alpha__点的透明度
  • linewidths__散点边框点的宽度
  • edgecolors__散点边框的颜色
  • cmap__指定散点的颜色映射,会使用不同颜色来区分散点的值

光谱

  • plt.cm.tab10()

plt.cm.tab10()

enumerate

  • enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
  • 可用[*]打开惰性数据

列表推导式

  • 列表推导式(又称列表解析式)提供了一种简明扼要的方法来创建列表。
  • 它的结构是在一个中括号里包含一个表达式,然后是一个for语句,然后是 0 个或多个 for 或者 if 语句。那个表达式可以是任意的,意思是你可以在列表中放入任意类型的对象。返回结果将是一个新的列表,在这个以 if 和 for 语句为上下文的表达式运行完成之后产生。
  • 列表推导式的执行顺序:各语句之间是嵌套关系,左边第二个语句是最外层,依次往右进一层,左边第一条语句是最后一层。
  • colors = [plt.cm.tab10(i/float(len(categories) - 1)) for i in range(len(categories))]

数据可视化实例(三): 散点图(pandas,matplotlib,numpy)的更多相关文章

  1. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  2. Echarts数据可视化series-effectscatter特效散点图,开发全解+完美注释

    全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...

  3. [译]学习IPython进行交互式计算和数据可视化(三)

    第二章 在本章中,我们将详细学习IPython相对以Python控制台带来的多种改进.特别的,我们将会进行下面的几个任务: 从IPython中使用系统shell以在shell和Python之间进行强大 ...

  4. 数据可视化实例(六): 带线性回归最佳拟合线的散点图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter3/chapter3 如果你想了解两个变量如何相互改变,那么最佳拟合线就是常用的方法. 下图显示了数据中 ...

  5. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  6. 数据可视化实例(五): 气泡图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter2/chapter2 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也 ...

  7. 数据可视化实例(八): 边缘直方图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter6/chapter6 边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y ...

  8. 数据可视化实例(十三): 发散型文本 (matplotlib,pandas)

    偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) ...

  9. 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...

随机推荐

  1. 2019-02-05 Linux的一些常用命令学习2

    黑马程序员python课的笔记 ls -l 显示文件详细信息 ls -l -h 以k形式显示大小 ls -a 显示指定目录下的所有子目录和文件,包括隐藏文件 ls匹配符 *代表任意个数的字符 ?代表任 ...

  2. (八)postman请求的form-data、x-www-form-urlencoded、raw、binary的区别

    原文链接:https://blog.csdn.net/jiadajing267/article/details/87883725 1.form-data 等价于http请求中的multipart/fo ...

  3. TCP和UDP的Socket编程实验

    Linux Socket 函数库是从 Berkeley 大学开发的 BSD UNIX 系统中移植过来的.BSD Socket 接口是在众多 Unix 系统中被广泛支持的 TCP/IP 通信接口,Lin ...

  4. 精美图文讲解Java AQS 共享式获取同步状态以及Semaphore的应用

    | 好看请赞,养成习惯 你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it ...

  5. STM32单片机应用与全案例实践 /stm32自学笔记 第二版 pdf

    STM32单片机应用与全案例实践pdf https://pan.baidu.com/s/16WrivuLcHvLTwS__Zcwl6Q 4rj3 stm32自学笔记 第二版 pdf https://p ...

  6. 人脸识别和手势识别应用(face++)开发

    基础认识 本项目使用的是face++平台,人脸识别+手势识别双确认显示. python编程,代码简介,方便扩展. 该项目适用于Windows系统和Linux系统,但必须安装相应的模块,其中包括 l  ...

  7. PHP丨PHP基础知识之条件语SWITCH判断「理论篇」

    Switch在一些计算机语言中是保留字,其作用大多情况下是进行判断选择.以PHP来说,switch(开关语句)常和case break default一起使用 典型结构 switch($control ...

  8. 微信小程序之后端处理

    首先,来看一下后端的关系图: 这边主要介绍PHP的一些基础语法等等,关于将php代码部署到SAE新浪云,大家可以参考这个链接:https://www.cnblogs.com/dhx96/p/65617 ...

  9. JMETER学习宝典

    1. 简介 Apache JMeter是100%纯java桌面应用程序,被设计用来测试客户端/服务器结构的软件(例如web应用程序).它可以用来测试包括基于静态和动态资源程序的性能,例如静态文件,Ja ...

  10. Spring Boot Admin 2.1.4最新实战教程

    环境的搭建 首先搭建eruka的注册中心 pom.xml <?xml version="1.0" encoding="UTF-8"?> <pr ...