第2章_神经网络入门_2-5&2-6 数据处理与模型图构建
神经元的TF实现
安装
版本: Python 2.7 tf 1.8.0 Linux
略
demo
神经网络的TF实现
# py36 tf 2.1.
# import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()
# https://blog.csdn.net/qq_39777550/article/details/104224296
import os
import pickle
import numpy as np
CIFAR_DIR = "./../../cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))
# 读取数据
def load_data(filename):
"""read data from data file."""
with open(filename, 'rb') as f:
data = pickle.load(f, encoding='bytes')
return data[b'data'], data[b'labels']
# tensorflow.Dataset.
class CifarData:
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data, labels = load_data(filename)
for item, label in zip(data, labels):
if label in [0, 1]:
all_data.append(item)
all_labels.append(label)
self._data = np.vstack(all_data)
self._data = self._data / 127.5 - 1
self._labels = np.hstack(all_labels)
print(self._data.shape)
print(self._labels.shape)
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._need_shuffle:
self._shuffle_data()
def _shuffle_data(self):
# [0,1,2,3,4,5] -> [5,3,2,4,0,1]
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
"""return batch_size examples as a batch."""
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception("have no more examples")
if end_indicator > self._num_examples:
raise Exception("batch size is larger than all examples")
batch_data = self._data[self._indicator: end_indicator]
batch_labels = self._labels[self._indicator: end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
# 搭建计算图
x = tf.placeholder(tf.float32, [None, 3072])
# [None] None表示输入样本不确定 可调整
y = tf.placeholder(tf.int64, [None])
# (3072, 1)
w = tf.get_variable('w', [x.get_shape()[-1], 1],
initializer=tf.random_normal_initializer(0, 1))
# (1, )
b = tf.get_variable('b', [1],
initializer=tf.constant_initializer(0.0))
# [None, 3072] * [3072, 1] = [None, 1]
y_ = tf.matmul(x, w) + b
# [None, 1]
p_y_1 = tf.nn.sigmoid(y_)
# [None, 1]
y_reshaped = tf.reshape(y, (-1, 1))
y_reshaped_float = tf.cast(y_reshaped, tf.float32)
loss = tf.reduce_mean(tf.square(y_reshaped_float - p_y_1))
# bool
predict = p_y_1 > 0.5
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(tf.cast(predict, tf.int64), y_reshaped)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 100000
test_steps = 100
with tf.Session() as sess:
sess.run(init)
for i in range(train_steps):
batch_data, batch_labels = train_data.next_batch(batch_size)
loss_val, acc_val, _ = sess.run(
[loss, accuracy, train_op],
feed_dict={
x: batch_data,
y: batch_labels})
if (i+1) % 500 == 0:
print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' % (i+1, loss_val, acc_val))
if (i+1) % 5000 == 0:
test_data = CifarData(test_filenames, False)
all_test_acc_val = []
for j in range(test_steps):
test_batch_data, test_batch_labels \
= test_data.next_batch(batch_size)
test_acc_val = sess.run(
[accuracy],
feed_dict = {
x: test_batch_data,
y: test_batch_labels
})
all_test_acc_val.append(test_acc_val)
test_acc = np.mean(all_test_acc_val)
print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))
out:
[Train] Step: 500, loss: 0.20478, acc: 0.75000
[Train] Step: 1000, loss: 0.21155, acc: 0.75000
[Train] Step: 1500, loss: 0.43419, acc: 0.55000
[Train] Step: 2000, loss: 0.20231, acc: 0.80000
[Train] Step: 2500, loss: 0.29795, acc: 0.70000
[Train] Step: 3000, loss: 0.10000, acc: 0.90000
[Train] Step: 3500, loss: 0.20452, acc: 0.80000
[Train] Step: 4000, loss: 0.10001, acc: 0.90000
[Train] Step: 4500, loss: 0.19975, acc: 0.80000
[Train] Step: 5000, loss: 0.19999, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 5000, acc: 0.79950
[Train] Step: 5500, loss: 0.24914, acc: 0.70000
[Train] Step: 6000, loss: 0.19750, acc: 0.80000
[Train] Step: 6500, loss: 0.14980, acc: 0.85000
[Train] Step: 7000, loss: 0.20100, acc: 0.80000
[Train] Step: 7500, loss: 0.15000, acc: 0.85000
[Train] Step: 8000, loss: 0.25308, acc: 0.75000
[Train] Step: 8500, loss: 0.10026, acc: 0.90000
[Train] Step: 9000, loss: 0.25647, acc: 0.75000
[Train] Step: 9500, loss: 0.23454, acc: 0.75000
[Train] Step: 10000, loss: 0.00000, acc: 1.00000
(2000, 3072)
(2000,)
[Test ] Step: 10000, acc: 0.80750
[Train] Step: 10500, loss: 0.13790, acc: 0.85000
[Train] Step: 11000, loss: 0.09943, acc: 0.90000
[Train] Step: 11500, loss: 0.29916, acc: 0.70000
[Train] Step: 12000, loss: 0.15001, acc: 0.85000
[Train] Step: 12500, loss: 0.25000, acc: 0.75000
[Train] Step: 13000, loss: 0.53574, acc: 0.45000
[Train] Step: 13500, loss: 0.20016, acc: 0.80000
[Train] Step: 14000, loss: 0.30000, acc: 0.70000
[Train] Step: 14500, loss: 0.20156, acc: 0.80000
[Train] Step: 15000, loss: 0.18963, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 15000, acc: 0.82050
[Train] Step: 15500, loss: 0.12585, acc: 0.85000
[Train] Step: 16000, loss: 0.15000, acc: 0.85000
[Train] Step: 16500, loss: 0.10003, acc: 0.90000
[Train] Step: 17000, loss: 0.15028, acc: 0.85000
[Train] Step: 17500, loss: 0.20604, acc: 0.80000
[Train] Step: 18000, loss: 0.28701, acc: 0.70000
[Train] Step: 18500, loss: 0.28371, acc: 0.70000
[Train] Step: 19000, loss: 0.18576, acc: 0.80000
[Train] Step: 19500, loss: 0.17266, acc: 0.80000
[Train] Step: 20000, loss: 0.05000, acc: 0.95000
(2000, 3072)
(2000,)
[Test ] Step: 20000, acc: 0.82350
[Train] Step: 20500, loss: 0.05006, acc: 0.95000
[Train] Step: 21000, loss: 0.25004, acc: 0.75000
[Train] Step: 21500, loss: 0.10000, acc: 0.90000
[Train] Step: 22000, loss: 0.20000, acc: 0.80000
[Train] Step: 22500, loss: 0.25239, acc: 0.75000
[Train] Step: 23000, loss: 0.19881, acc: 0.80000
[Train] Step: 23500, loss: 0.15887, acc: 0.85000
[Train] Step: 24000, loss: 0.16960, acc: 0.80000
[Train] Step: 24500, loss: 0.14990, acc: 0.85000
[Train] Step: 25000, loss: 0.10783, acc: 0.90000
(2000, 3072)
(2000,)
[Test ] Step: 25000, acc: 0.82450
[Train] Step: 25500, loss: 0.06129, acc: 0.95000
[Train] Step: 26000, loss: 0.25004, acc: 0.75000
[Train] Step: 26500, loss: 0.05000, acc: 0.95000
[Train] Step: 27000, loss: 0.06949, acc: 0.90000
[Train] Step: 27500, loss: 0.15037, acc: 0.85000
[Train] Step: 28000, loss: 0.05000, acc: 0.95000
[Train] Step: 28500, loss: 0.13999, acc: 0.85000
[Train] Step: 29000, loss: 0.11145, acc: 0.90000
[Train] Step: 29500, loss: 0.16517, acc: 0.80000
[Train] Step: 30000, loss: 0.05007, acc: 0.95000
(2000, 3072)
(2000,)
[Test ] Step: 30000, acc: 0.82450
[Train] Step: 30500, loss: 0.20095, acc: 0.80000
[Train] Step: 31000, loss: 0.18170, acc: 0.80000
[Train] Step: 31500, loss: 0.19512, acc: 0.80000
[Train] Step: 32000, loss: 0.00000, acc: 1.00000
[Train] Step: 32500, loss: 0.20135, acc: 0.80000
[Train] Step: 33000, loss: 0.11704, acc: 0.85000
[Train] Step: 33500, loss: 0.05083, acc: 0.95000
[Train] Step: 34000, loss: 0.09994, acc: 0.90000
[Train] Step: 34500, loss: 0.11291, acc: 0.85000
[Train] Step: 35000, loss: 0.10000, acc: 0.90000
(2000, 3072)
(2000,)
[Test ] Step: 35000, acc: 0.82100
[Train] Step: 35500, loss: 0.09685, acc: 0.90000
[Train] Step: 36000, loss: 0.05111, acc: 0.95000
[Train] Step: 36500, loss: 0.15356, acc: 0.85000
[Train] Step: 37000, loss: 0.14997, acc: 0.85000
[Train] Step: 37500, loss: 0.08142, acc: 0.90000
[Train] Step: 38000, loss: 0.31816, acc: 0.65000
[Train] Step: 38500, loss: 0.15094, acc: 0.85000
[Train] Step: 39000, loss: 0.10831, acc: 0.90000
[Train] Step: 39500, loss: 0.14931, acc: 0.85000
[Train] Step: 40000, loss: 0.13410, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 40000, acc: 0.82400
[Train] Step: 40500, loss: 0.25000, acc: 0.75000
[Train] Step: 41000, loss: 0.18313, acc: 0.80000
[Train] Step: 41500, loss: 0.25164, acc: 0.75000
[Train] Step: 42000, loss: 0.10002, acc: 0.90000
[Train] Step: 42500, loss: 0.20063, acc: 0.80000
[Train] Step: 43000, loss: 0.20210, acc: 0.80000
[Train] Step: 43500, loss: 0.14993, acc: 0.85000
[Train] Step: 44000, loss: 0.27625, acc: 0.70000
[Train] Step: 44500, loss: 0.09901, acc: 0.90000
[Train] Step: 45000, loss: 0.08543, acc: 0.90000
(2000, 3072)
(2000,)
[Test ] Step: 45000, acc: 0.82200
[Train] Step: 45500, loss: 0.15000, acc: 0.85000
[Train] Step: 46000, loss: 0.15736, acc: 0.85000
[Train] Step: 46500, loss: 0.10140, acc: 0.90000
[Train] Step: 47000, loss: 0.05000, acc: 0.95000
[Train] Step: 47500, loss: 0.14900, acc: 0.85000
[Train] Step: 48000, loss: 0.10006, acc: 0.90000
[Train] Step: 48500, loss: 0.25005, acc: 0.75000
[Train] Step: 49000, loss: 0.14953, acc: 0.85000
[Train] Step: 49500, loss: 0.00000, acc: 1.00000
[Train] Step: 50000, loss: 0.15218, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 50000, acc: 0.82400
[Train] Step: 50500, loss: 0.15024, acc: 0.85000
[Train] Step: 51000, loss: 0.24747, acc: 0.75000
[Train] Step: 51500, loss: 0.10175, acc: 0.90000
[Train] Step: 52000, loss: 0.10000, acc: 0.90000
[Train] Step: 52500, loss: 0.10093, acc: 0.90000
[Train] Step: 53000, loss: 0.04343, acc: 0.90000
[Train] Step: 53500, loss: 0.25575, acc: 0.75000
[Train] Step: 54000, loss: 0.14995, acc: 0.85000
[Train] Step: 54500, loss: 0.05000, acc: 0.95000
[Train] Step: 55000, loss: 0.11438, acc: 0.90000
(2000, 3072)
(2000,)
[Test ] Step: 55000, acc: 0.82300
[Train] Step: 55500, loss: 0.15405, acc: 0.85000
[Train] Step: 56000, loss: 0.05102, acc: 0.95000
[Train] Step: 56500, loss: 0.00000, acc: 1.00000
[Train] Step: 57000, loss: 0.10003, acc: 0.90000
[Train] Step: 57500, loss: 0.10098, acc: 0.90000
[Train] Step: 58000, loss: 0.15034, acc: 0.85000
[Train] Step: 58500, loss: 0.20014, acc: 0.80000
[Train] Step: 59000, loss: 0.10171, acc: 0.90000
[Train] Step: 59500, loss: 0.20040, acc: 0.80000
[Train] Step: 60000, loss: 0.15008, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 60000, acc: 0.82450
[Train] Step: 60500, loss: 0.10014, acc: 0.90000
[Train] Step: 61000, loss: 0.05013, acc: 0.95000
[Train] Step: 61500, loss: 0.05019, acc: 0.95000
[Train] Step: 62000, loss: 0.05106, acc: 0.95000
[Train] Step: 62500, loss: 0.31838, acc: 0.70000
[Train] Step: 63000, loss: 0.15213, acc: 0.85000
[Train] Step: 63500, loss: 0.21945, acc: 0.75000
[Train] Step: 64000, loss: 0.00000, acc: 1.00000
[Train] Step: 64500, loss: 0.14999, acc: 0.85000
[Train] Step: 65000, loss: 0.20631, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 65000, acc: 0.82650
[Train] Step: 65500, loss: 0.10079, acc: 0.90000
[Train] Step: 66000, loss: 0.10001, acc: 0.90000
[Train] Step: 66500, loss: 0.10000, acc: 0.90000
[Train] Step: 67000, loss: 0.05000, acc: 0.95000
[Train] Step: 67500, loss: 0.06823, acc: 0.90000
[Train] Step: 68000, loss: 0.25001, acc: 0.75000
[Train] Step: 68500, loss: 0.24419, acc: 0.75000
[Train] Step: 69000, loss: 0.15000, acc: 0.85000
[Train] Step: 69500, loss: 0.15000, acc: 0.85000
[Train] Step: 70000, loss: 0.15198, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 70000, acc: 0.82400
[Train] Step: 70500, loss: 0.13796, acc: 0.85000
[Train] Step: 71000, loss: 0.15036, acc: 0.85000
[Train] Step: 71500, loss: 0.24917, acc: 0.75000
[Train] Step: 72000, loss: 0.00000, acc: 1.00000
[Train] Step: 72500, loss: 0.16025, acc: 0.85000
[Train] Step: 73000, loss: 0.05124, acc: 0.95000
[Train] Step: 73500, loss: 0.05395, acc: 0.95000
[Train] Step: 74000, loss: 0.15262, acc: 0.85000
[Train] Step: 74500, loss: 0.11369, acc: 0.90000
[Train] Step: 75000, loss: 0.20410, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 75000, acc: 0.82600
[Train] Step: 75500, loss: 0.20000, acc: 0.80000
[Train] Step: 76000, loss: 0.15000, acc: 0.85000
[Train] Step: 76500, loss: 0.15020, acc: 0.85000
[Train] Step: 77000, loss: 0.15000, acc: 0.85000
[Train] Step: 77500, loss: 0.15294, acc: 0.85000
[Train] Step: 78000, loss: 0.15832, acc: 0.85000
[Train] Step: 78500, loss: 0.25277, acc: 0.75000
[Train] Step: 79000, loss: 0.20001, acc: 0.80000
[Train] Step: 79500, loss: 0.12471, acc: 0.85000
[Train] Step: 80000, loss: 0.01566, acc: 1.00000
(2000, 3072)
(2000,)
[Test ] Step: 80000, acc: 0.82450
[Train] Step: 80500, loss: 0.14999, acc: 0.85000
[Train] Step: 81000, loss: 0.20000, acc: 0.80000
[Train] Step: 81500, loss: 0.10390, acc: 0.90000
[Train] Step: 82000, loss: 0.19998, acc: 0.80000
[Train] Step: 82500, loss: 0.20066, acc: 0.80000
[Train] Step: 83000, loss: 0.20394, acc: 0.80000
[Train] Step: 83500, loss: 0.10256, acc: 0.90000
[Train] Step: 84000, loss: 0.15013, acc: 0.85000
[Train] Step: 84500, loss: 0.15000, acc: 0.85000
[Train] Step: 85000, loss: 0.15002, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 85000, acc: 0.82300
[Train] Step: 85500, loss: 0.10160, acc: 0.90000
[Train] Step: 86000, loss: 0.15183, acc: 0.85000
[Train] Step: 86500, loss: 0.10011, acc: 0.90000
[Train] Step: 87000, loss: 0.10062, acc: 0.90000
[Train] Step: 87500, loss: 0.10850, acc: 0.90000
[Train] Step: 88000, loss: 0.05128, acc: 0.95000
[Train] Step: 88500, loss: 0.19986, acc: 0.80000
[Train] Step: 89000, loss: 0.20000, acc: 0.80000
[Train] Step: 89500, loss: 0.20552, acc: 0.80000
[Train] Step: 90000, loss: 0.20248, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 90000, acc: 0.82850
[Train] Step: 90500, loss: 0.15013, acc: 0.85000
[Train] Step: 91000, loss: 0.10157, acc: 0.90000
[Train] Step: 91500, loss: 0.05001, acc: 0.95000
[Train] Step: 92000, loss: 0.19992, acc: 0.80000
[Train] Step: 92500, loss: 0.15054, acc: 0.85000
[Train] Step: 93000, loss: 0.15037, acc: 0.85000
[Train] Step: 93500, loss: 0.05008, acc: 0.95000
[Train] Step: 94000, loss: 0.10047, acc: 0.90000
[Train] Step: 94500, loss: 0.20108, acc: 0.80000
[Train] Step: 95000, loss: 0.00000, acc: 1.00000
(2000, 3072)
(2000,)
[Test ] Step: 95000, acc: 0.82550
[Train] Step: 95500, loss: 0.12996, acc: 0.85000
[Train] Step: 96000, loss: 0.04520, acc: 0.95000
[Train] Step: 96500, loss: 0.12607, acc: 0.85000
[Train] Step: 97000, loss: 0.18041, acc: 0.80000
[Train] Step: 97500, loss: 0.10482, acc: 0.90000
[Train] Step: 98000, loss: 0.20055, acc: 0.80000
[Train] Step: 98500, loss: 0.10218, acc: 0.90000
[Train] Step: 99000, loss: 0.20037, acc: 0.80000
[Train] Step: 99500, loss: 0.15000, acc: 0.85000
[Train] Step: 100000, loss: 0.05154, acc: 0.95000
(2000, 3072)
(2000,)
[Test ] Step: 100000, acc: 0.82550
第2章_神经网络入门_2-5&2-6 数据处理与模型图构建的更多相关文章
- ArcGIS for Desktop入门教程_第七章_使用ArcGIS进行空间分析 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第七章_使用ArcGIS进行空间分析 - ArcGIS知乎-新一代ArcGIS问答社区 1 使用ArcGIS进行空间分析 1.1 GIS分析基础 G ...
- ArcGIS for Desktop入门教程_第六章_用ArcMap制作地图 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第六章_用ArcMap制作地图 - ArcGIS知乎-新一代ArcGIS问答社区 1 用ArcMap制作地图 作为ArcGIS for Deskto ...
- ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区 1 入门案例分析 在第一章里,我们已经对ArcGIS系列软件的体系结构有了一 ...
- ArcGIS for Desktop入门教程_第一章_引言 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第一章_引言 - ArcGIS知乎-新一代ArcGIS问答社区 1 引言 1.1 读者定位 我们假设用户在阅读本指南前应已具备以下知识: · 熟悉W ...
- 第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent ...
- 第十四章——循环神经网络(Recurrent Neural Networks)(第二部分)
本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks) ...
- 人工神经网络入门(4) —— AFORGE.NET简介
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门 ...
- C Primer Plus_第6章_循环_编程练习
1.题略 #include int main(void) { int i; char ch[26]; for (i = 97; i <= (97+25); i++) { ch[i-97] = i ...
- C Primer Plus_第5章_运算符、表达式和语句_编程练习
Practice 1. 输入分钟输出对应的小时和分钟. #include #define MIN_PER_H 60 int main(void) { int mins, hours, minutes; ...
随机推荐
- 近期一些使用MATLAB常用的代码
背景 最近处理行为学数据和fMRI数据,主要使用MATLAB.有一些常用的代码被自己重复使用,所以在此记录,以便于随时调取使用. 1.PVT原生mat文件→txt文件 遇到在处理一些被试的PVT数据时 ...
- kali2020.01修改root终端颜色
kali2020.01非root用户的终端和root用户终端颜色存在较大差异: 修改配置,将非root用户的配置替换root用户,输入以下命令即可: cd /home/lijingrong //切换到 ...
- Python循环语句代码详解:while、for、break
1 while循环 循环语句是程序设计中常用的语句之一.任何编程语言都有while循环,Python也不例外.while循环的格式如下所示. while(表达式): - else: ...
- 回顾 2020 年 GitHub 的大事件,你知道多少?
作者:HelloGitHub-小鱼干 这里是 HelloGitHub 出品的年度盘点系列,本期我们将盘点 GitHub 在 2020 发生的大事件,回顾一下今年 GitHub 给我们带来了那些惊喜.故 ...
- [.NET] - 基础知识 - 如何debug一个.NET application
1.可以使用Debug/Trace类来将runtime信息输出到控制台窗口: https://msdn.microsoft.com/en-us/library/bs4c1wda.aspx https: ...
- Go操作Redis实战
目录 安装Redis客户端 连接redis 基本指令 Keys():根据正则获取keys Type():获取key对应值得类型 Del():删除缓存项 Exists():检测缓存项是否存在 Expir ...
- CentOS7 实战源码部署nginx网站服务器
简介:实战演练nginx网站服务器的搭建 nginx 简介: Nginx是一款高性能的 HTTP 和反向代理服务器 Nginx的优点: 1.高并发量:根据官方给出的数据,能够支持高达 50,000 ...
- MySQL求两表的差集(非交集)
mysql如何查询两个字段数不同的表中数据不一致的记录 一般可用NOT EXISTS(非存在子句)或 LEFT JOIN左(右)连接后所产生空字段值来筛选两表的差集 1.NOT EXISTS not ...
- easyui datebox 年月 yyyyMM 格式
//js日期重写ny为 function formatTime(ny){ var p = ny.datebox('panel'), //日期选择对象 tds = false, //日期选择对象中月份 ...
- matplotlib中subplots的用法
1.matplotlib中如果只画一张图的话,可以直接用pyplot,一般的做法是: import matplotlib.pyplot as plt plt.figure(figsize=(20,8) ...