• What features of GPUs allow them to perform computations faster than a typical CPU?

    GPUs have a massively parallel processing architecture consisting of thousands of smaller, more efficient cores designed to handle multiple tasks simultaneously. It uses the CUDA(Compute Unified Device Architecture) technology to connect those internal processors together and become a thread processor to solve data-intensive calculations. Each processor can exchange, sync and share the data. GPUs have a parallel stream architecture that focuses on executing a large number of concurrent threads at a slower speed rather than executing a single thread rapidly. Whereas, the CPU just consists of several cores optimized for serial processing, does not have a strong capability in parallel processing.

- What is the biggest limiting factor for training large models with current generation GPUs?

Training large models mean the data size is huge. The GPU memory capacity is the biggest limiting factor for training large models. The memory capacity limiting factor prevents GPU form handling terabyte-scale data. Due to limited by the bandwidth and latency of the PCIe bus, once the data size is bigger than the capacity of the GPU memory, the performance decreases significantly as the data transfers to the device become the primary bottleneck.

  • GPU 一个core的结构是-->SM(streaming multiprocessor )-->多个SP(streaming processor )->shared memory, 一个SM里共享内存。如果是SIMT(单指令多线程)多处理器,它以一个可伸缩的多线程流处理器(Streaming Multiprocessors,SMs)阵列为中心实现了MIMD(多指令多数据)的异步并行机制,其中每个多处理器(multiprocessor

    )包含多个标量处理器(Scalar Processor,SP),线程结构是grid-->block-->thread,每个线程有个local memory, 通过global memory, constant memory 和 texture memory和CPU共享内存。所以多个显卡是没办法共享内存的,而且global memory是一种很慢的方式。多显卡间也可以交换内存,但是速度就慢了,违反了GPU设计的初衷。

  • deep learning 里一般限制训练效率的是显存大小而不是流处理单元个数?

    这个好像很难说,GPU的设计就是SIMD,单指令多数据流。简化指令,数据流更多,通过SIMT,实现MIMD,此时SP就要处理指令和任务,GPU进行并行计算,也就是很多个SP同时做处理。你说它少了,也会影响效率。但总的来说还是显存大小更重要。

GPU 总结的更多相关文章

  1. 高级渲染技巧和代码示例 GPU Pro 7

    下载代码示例 移动设备正呈现着像素越来越高,屏幕尺寸越来越小的发展趋势. 由于像素着色的能耗非常大,因此 DPI 的增加以及移动设备固有的功耗受限环境为降低像素着色成本带来了巨大的压力. MSAA 有 ...

  2. 【腾讯优测干货分享】安卓专项测试之GPU测试探索

    本文来自于Dev Club 开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/57c7ffdc0569a1191bce8a63 作者:章未哲——腾讯SNG质 ...

  3. [译]基于GPU的体渲染高级技术之raycasting算法

    [译]基于GPU的体渲染高级技术之raycasting算法 PS:我决定翻译一下<Advanced Illumination Techniques for GPU-Based Volume Ra ...

  4. Microsoft Windows* SDK May 2010 或较新版本(兼容 2010 年 6 月 DirectX SDK)GPU Detect

    原文链接 下载代码样本 特性/描述 日期: 2016 年 5 月 5 日 GPU Detect 是一种简短的示例,演示了检测系统中主要显卡硬件(包括第六代智能英特尔® 酷睿™ 处理器产品家族)的方式. ...

  5. 基于GPU的高分一号影像正射校正的设计与实现

    一 RPC正射校正的原理 影像正射校正的方法有很多,主要包含两大类:一类是严格的几何纠正模型,另一类是近似几何纠正模型.当遥感影像的成像模型和有关参数已知时,可以根据严格的成像模型来校正图像,这种方法 ...

  6. tensorflow 一些好的blog链接和tensorflow gpu版本安装

    pading :SAME,VALID 区别  http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法 ...

  7. [信安Presentation]一种基于GPU并行计算的MD5密码解密方法

    -------------------paper--------------------- 一种基于GPU并行计算的MD5密码解密方法 0.abstract1.md5算法概述2.md5安全性分析3.基 ...

  8. 【转】Ubuntu 16.04安装配置TensorFlow GPU版本

    之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...

  9. 为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码?

    作者:Cascade链接:https://www.zhihu.com/question/21231074/answer/20701124来源:知乎著作权归作者所有,转载请联系作者获得授权. 想要理解G ...

  10. 浅谈CPU和GPU的区别

    导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据 ...

随机推荐

  1. 通过模拟数据,使用js在前端实现模糊查询下拉框功能实例教程

    所谓模糊查询就是通过关键字在数据中匹配到包含关键字的数据,而得出的查询结果.本实例教程讲解在前端文本框输入关键字,显示匹配的数据列表功能. 首先得准备一个文本框和显示数据列表的div元素,html代码 ...

  2. Elasticsearch 之 Filter 与 Query 有啥不同?

    今天来了解下 Elasticsearch(以下简称 ES) 中的 Query 和 Filter. 在 ES 中,提供了 Query 和 Filter 两种搜索: Query Context:会对搜索进 ...

  3. Maven三种打包方式jar war pom

    1.pom工程 用在父级工程或聚合工程中.用来做jar包的版本控制.必须指明这个聚合工程的打包方式为pom 2.war工程 将会打包成war,发布在服务器上的工程.如网站或服务.在SpringBoot ...

  4. 【poj 2478】Farey Sequence(数论--欧拉函数 找规律求前缀和)

    题意:定义 Fn 序列表示一串 <1 的分数,分数为最简分数,且分母 ≤n .问该序列的个数.(2≤N≤10^6) 解法:先暴力找规律(代码见屏蔽处),发现 Fn 序列的个数就是 Φ(1)~Φ( ...

  5. 【uva 1658】Admiral(图论--网络流 最小费用最大流)

    题意:有个N个点M个边的有向加权图,求1~N的两条不相交路径(除了起点和终点外没有公共点),使得权和最小. 解法:不相交?也就是一个点只能经过一次,也就是我后面博文会讲的"结点容量问题&qu ...

  6. hdu 6827 Road To The 3rd Building

    题意: t组输入,每一组一个n,然后后面是n个树的值(我们放到数组v里面),你需要从[1,n]这个区间内挑选出来两个数i,j,你需要保证i<=j,之后你要求一下v[i]+v[i+1]+...+v ...

  7. hdu1558 Segment set

    Problem Description A segment and all segments which are connected with it compose a segment set. Th ...

  8. Linux 设置简单密码

    centos: echo 密码 | passwd --stdin 用户名 ubuntu:(需先设置一个密码) sudo passwd username https://blog.csdn.net/mi ...

  9. 创建java文件和注释

    创建java文件和注释 一 创建java文件 在文件夹里创建txt文本文件,后将格式改为.java, 输入 1 public class Hello{ 2 public static void mai ...

  10. [Golang]-1 Slice与数组的区别

    目录 数组 1.创建数组: 2.数组是值拷贝传递: 切片(slice) 1.首先看看slice的源码结构: 2.slice的创建: 3.slice使用make创建 4.切片作为参数传递 5.Golan ...