前言:本人是个DP蒟蒻,一直以来都特别害怕DP,终于鼓起勇气做了几道DP题,发现也没想象中的那么难?(又要被DP大神吊打了呜呜呜。

-----------------------

首先,区间DP是什么?

区间DP是一种以区间长度为阶段的DP方法。这种DP的解法较为固定,一般都是先枚举区间长度,再枚举左端点,根据左端点+长度推出右端点,然后枚举中间的断点进行转移。

伪代码:

for (int len=;len<=n;len++)
for (int i=;i<=n-len+;i++)
{
int j=i+len-;
for (int k=i;k<j;k++) f[i][j]=max(f[i][j],f[i][k]+f[k+][j]);
ans=max(ans,f[i][j]);
}

一句题外话:最短路算法中的佛洛依德算法的本质就是区间DP。

--------------------------

区间DP有两种形式(还是需要选手自己转化的。

一.环型DP

1.石子合并

经典题目,每个OI初学者必做的一道题。

首先我们要解决的是环的问题。我们可以将长度扩大到原来的二倍,破换成链。这是一种非常重要的思想,以后做题会经常遇到。

然后我们考虑区间DP的问题。每个区间都是由子区间合并而来,代价是两个子区间之和。所以我们不妨枚举区间内的断点,看哪种合并方式能得到最优解。

所以不难得出状态转移方程:

$f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+1][j])$

$f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+1][j])$

初始化即为$f[i][i]=a[i]$。

Code:

#include<bits/stdc++.h>
using namespace std;
int f1[][],f2[][],s[][];
int a[],sum[],n,ans1,ans2;
void init()
{
cin>>n;
for (int i=;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
for (int i=;i<=n*;i++)
{
sum[i]=sum[i-]+a[i];
f2[i][i]=;f1[i][i]=;
}
}
void dp()
{
for (int l=;l<=n;l++)
for (int i=;i<=*n-l+;i++)
{
int j=i+l-;
f1[i][j]=0x7fffffff/;f2[i][j]=;
for (int k=i;k<j;k++)
{
f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+][j]);
f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+][j]);
}
f1[i][j]+=sum[j]-sum[i-];
f2[i][j]+=sum[j]-sum[i-];
}
ans1=0x7fffffff/;ans2=;
for (int i=;i<=n;i++) ans1=min(ans1,f1[i][i+n-]);
for (int i=;i<=n;i++) ans2=max(ans2,f2[i][i+n-]);
}
int main()
{
init();
dp();
cout<<ans1<<endl<<ans2<<endl;
return ;
}

多边形

这也是一道环型DP,而且细节蛮多的,有兴趣不妨可以到我的博客里看一看。链接已备好。

二.链型DP

有些题太过于直白导致一眼看出状态转移方程,这里就不写了。直接上一道比较有难度的题。

关路灯

根据题中的提示,我们发现区间$[i,j]$的转移有两种情况:

1.直接顺着走下来。

2.走到某处折返。

又因为老张只能关他相邻的灯,所以我们得出状态转移方程:

$f[i][j][0]=min(f[i+1][j][0]+(pos[i+1]-pos[i])*(sum[n]-sum[j]+sum[i]),f[i+1][j][1]+(pos[j]-pos[i])*(sum[n]-sum[j]+sum[i]))$
$f[i][j][1]=min(f[i][j-1][1]+(pos[j]-pos[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(pos[j]-pos[i])*(sum[i-1]+sum[n]-sum[j-1]))$

其中前缀和要预处理,$0$表示在左端点,$1$表示在右端点。

Code:

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int f[maxn][maxn][],n,c,pos[maxn],w[maxn],sum[maxn];
int main()
{
scanf("%d%d",&n,&c);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++) f[i][j][]=f[i][j][]=0x3f3f3f3f;
for (int i=;i<=n;i++) scanf("%d%d",&pos[i],&w[i]),sum[i]=w[i]+sum[i-];
f[c][c][]=f[c][c][]=;
for (int len=;len<=n;len++)
for (int i=;i<=n-len+;i++)
{
int j=i+len-;
f[i][j][]=min(f[i+][j][]+(pos[i+]-pos[i])*(sum[n]-sum[j]+sum[i]),f[i+][j][]+(pos[j]-pos[i])*(sum[n]-sum[j]+sum[i]));
f[i][j][]=min(f[i][j-][]+(pos[j]-pos[j-])*(sum[i-]+sum[n]-sum[j-]),f[i][j-][]+(pos[j]-pos[i])*(sum[i-]+sum[n]-sum[j-]));
}
printf("%d",min(f[][n][],f[][n][]));
return ;
}

后记:其实DP题目量还是比较大的,而且NOIp必考,所以要花大功夫在这上面。

区间DP 学习笔记的更多相关文章

  1. 区间dp学习笔记

    怎么办,膜你赛要挂惨了,下午我还在学区间\(dp\)! 不管怎么样,计划不能打乱\(4\)不\(4\).. 区间dp 模板 为啥我一开始就先弄模板呢?因为这东西看模板就能看懂... for(int i ...

  2. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

  3. DP学习笔记

    DP学习笔记 可是记下来有什么用呢?我又不会 笨蛋你以后就会了 完全背包问题 先理解初始的DP方程: void solve() { for(int i=0;i<;i++) for(int j=0 ...

  4. 树形DP 学习笔记

    树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...

  5. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  6. 区间DP学习总结

    这段时间学习了区间DP,所以试着把学到的东西稍作总结,以备不时之需. 学习区间DP首先要弄清区间DP是为了解决什么问题:一般的DP主要是特征是一次往往只操作一个数值或者存储可以不连续的物品的状态(比如 ...

  7. dp学习笔记(各种dp,比较杂)

    HDU1176 中文题意不多解释了. 建一个二维dp数组,dp[ i ][ j ]表示第 i 秒落在 j 处一个馅饼.我们需要倒着DP,为什么呢,从 0秒,x=5处出发,假如沿数组正着往下走,终点到哪 ...

  8. 动态 DP 学习笔记

    不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子 ...

  9. [总结] 动态DP学习笔记

    学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就 ...

随机推荐

  1. MYSQL 之 JDBC(十六): DBUtils

    DBUtils是Apache组织提供的一个开源的JDBC工具类库,能极大简化jdbc编码的工作量 API介绍 QueryRunner ResultSetHandler 工具类DbUtils 用DBUt ...

  2. python面试题:redis数据库

    来源链接: https://www.cnblogs.com/jasontec/p/9699242.html https://www.cnblogs.com/Java3y/p/10266306.html ...

  3. Python之class面向对象(基础篇)

    概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...

  4. python 面向对象专题(三):继承

    目录 Python面向对象03 /继承 1. 初识继承 2. 单继承 3. 多继承 4. 总结 1. 初识继承 概念:专业角度:如果B类继承A类,B类就称为子类,派生类,A类就称为父类,超类,基类 种 ...

  5. OSI物理层之数据通信基础知识

    @ 目录 物理层的基本概念 物理层的主要任务 数据通信的基础知识 典型的数据通信模型 相关术语 信道的基本概念 基带(base band)信号和带通(band pass)信号 几种最基本的调制方法 常 ...

  6. nodejs之数据库连接

    nodejs 对 MySQL.mongodb.redis 数据库的连接方式. MySQL: var mysql = require('mysql') var { MYSQL } = require(' ...

  7. 手写简易的Mybatis

    手写简易的Mybatis 此篇文章用来记录今天花个五个小时写出来的简易版mybatis,主要实现了基于注解方式的增删查改,目前支持List,Object类型的查找,参数都是基于Map集合的,可以先看一 ...

  8. Facebook没有测试工程师,如何进行质量控制的?

    Facebook从04年的哈佛校园的学生项目在短短的7-8年的时间中快速增长为拥有10亿用户的世界上最大的社交网络,又一次见证了互联网创业成功的奇迹.同时它的产品研发流程也成为了众多互联网产品公司的追 ...

  9. java不需要递归列表转树形结构

    有时候我们需要将列表结构的数据转成树形结构的数据 废话不多说直接上代码 基础类 `@Data public class TreeNode { private Long id; private Long ...

  10. Python Hacking Tools - Vulnerability Scanner

    Security Header website: https://securityheaders.com/ Scan the target website: https://www.hackthiss ...