Open Data Structure Templates
数据结构模板 Chen 2016/12/22
Open Source in Github: https://github.com/Wasdns/DataStructure-Templates
前言
本篇博客的模板,全部是我纯手打的,如果有发现错误,请在下方留言指正:)。欢迎大家参考。
有一些地方还不是很完善,等过一阵子用C++实现和部分重构下。
C/C++ 常用字符串函数
#include <string.h>
strcpy
char * strcpy( char * dest, const char * src );
功能:把 src 所指由NULL结束的字符串复制到 dest 所指的数组中。
说明:src 和 dest 所指内存区域不可以重叠且 dest 必须有足够的空间来容纳 src 的字符串。返回指向 dest 结尾处字符(NULL)的指针。
strcmp
int strcmp ( const char * str1, const char * str2 );
功能:比较字符串 str1 和 str2。
说明:
当s1<s2时,返回值<0
当s1=s2时,返回值=0
当s1>s2时,返回值>0
strlen
size_t strlen ( const char * str );
功能:计算字符串 str 的长度
说明:返回 str 的长度,不包括结束符NULL。(注意与 sizeof 的区别)
C++:StringStream
#include <sstream>
int a;
stringstream ss;
ss << "32";
ss >> a;
ss.clear();
排序
相关定义
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
/*存储数组定义*/
int num[100005];
void swap1(int i, int j)
{
int t = num[i];
num[i] = num[j];
num[j] = t;
}
/*Printnum 输出*/
void Printnum(int n)
{
for (int i = 1; i <= n; i++) {
cout << num[i] << " ";
}
cout << endl;
}
冒泡排序
/*Bubble_Sort 冒泡排序*/
void Bubble_Sort(int n)
{
int i, j;
for (i = 1; i <= n; i++) //遍历n次
{
for (j = 1; j <= n-i; j++) //每次都把最大数往后排,缩小范围
{
if (num[j] > num[j+1])
{
swap1(j, j+1);
}
}
}
}
void Bubble_Sort_Better(int n)
{
int i, j;
for (i = 1; i <= n; i++)
{
bool flag = true;
for (j = 1; j <= n-i; j++)
{
if (num[j] > num[j+1])
{
flag = false;
swap1(j, j+1);
}
}
if (flag) break; //某一次遍历没有发生交换时,结束
}
}
选择排序
/*Selection_Sort 选择排序*/
void Selection_Sort(int n)
{
int i, j;
int rcd;
for (i = 1; i <= n; i++)
{
rcd = i;
for (j = i+1; j <= n; j++)
{
if (num[j] < num[rcd]) //找出i+1=>n范围内的最小元并前移
{
rcd = j;
}
}
swap1(i, rcd);
}
}
归并排序
/*Merge_Sort 归并排序*/
int temp[100005];
void Merge_Array(int l1, int r1, int l2, int r2)
{
int p1 = l1;
int p2 = l2;
int i = 1;
memset(temp, 0, sizeof(temp));
for (i = l1; i <= r2; i++)
{
if (p1 > r1)
{
temp[i] = num[p2++];
continue;
}
if (p2 > r2)
{
temp[i] = num[p1++];
continue;
}
if (num[p1] < num[p2])
{
temp[i] = num[p1++];
continue;
}
else
{
temp[i] = num[p2++];
continue;
}
}
for (i = l1; i <= r2; i++)
{
num[i] = temp[i];
}
}
void Merge_Sort(int l, int r)
{
if (l < r)
{
int mid = (l+r)/2;
Merge_Sort(l, mid); //l => mid
Merge_Sort(mid+1, r); //mid+1 => r
Merge_Array(l, mid, mid+1, r); //l => mid => mid+1 => r
}
}
快速排序
/*Quick_Sort 快速排序*/
int Quick_Sort_Adjust(int l, int r)
{
int key = l; //选取第一个元素为基准值
int a, b;
a = l+1;
b = r;
while (a < b)
{
bool out_bound = false;
while (1)
{
if (num[a] > num[key]) break;
a++;
if (a > r)
{
out_bound = true;
break;
}
}
while (1)
{
if (num[b] < num[key]) break;
b--;
if (b < l)
{
out_bound = true;
break;
}
}
if (out_bound || a >= b) break; //如果出现越界或a>=b直接结束
swap1(a, b);
a++;
b--;
}
swap1(key, a-1);
return a-1;
}
void Quick_Sort(int l, int r)
{
if (l < r)
{
int mid = Quick_Sort_Adjust(l, r);
Quick_Sort(l, mid-1); //l => mid-1
Quick_Sort(mid+1, r); //mid+1 => r
}
}
并查集
并查集
int fa[100005];
void IniFUS(int n)
{
int i;
for (i = 1; i <= n; i++)
{
fa[i] = i;
}
}
int Find(int x)
{
int f = x;
while (f != fa[f])
{
f = fa[f];
}
int i = x, j;
while (i != f)
{
j = fa[i];
fa[i] = f;
i = j;
}
return f;
}
void Union(int x, int y)
{
int xfa = Find(x);
int yfa = Find(y);
if (xfa != yfa) {
fa[yfa] = xfa;
}
}
图
邻接表
struct edge
{
edge *next;
int num;
int len;
};
edge eg[100000];
struct head
{
edge *next;
int num;
};
head h[100000];
void IniList(int n)
{
int i;
for (i = 1; i <= n; i++)
{
h[i].next = NULL;
h[i].num = i;
}
}
void CreatList(int x, int y, int leng)
{
edge *p1, *p2;
p1 = new edge;
p1 -> next = NULL;
p1 -> num = y;
p1 -> len = leng;
p2 = h[x].next;
if (p2 == NULL) {
h[x].next = p1;
}
else
{
while (p2 -> next != NULL) {
p2 = p2 -> next;
}
p2 -> next = p1;
}
}
Dijkstra 单点到多点距离(邻接表实现):
/*
Dijkstra:
1.DijInitial
2.x_HasPath_y
3.Dijkstra
*/
int pre[100005]; //最短路节点的前继节点(查询最短路)
int dist[100005]; //源点到每个节点的最短路距离
bool ins[100005]; //节点i是否位于已查询节点集合S
void DijInitail(int start, int n)
{
int i;
for (i = 1; i <= n; i++)
{
dist[i] = maxn;
pre[i] = i;
ins[i] = false;
}
dist[start] = 0;
edge *p;
p = h[start].next;
while (p != NULL)
{
dist[p->num] = p->len;
p = p -> next;
}
}
int x_HasPath_y(int x, int y)
{
edge *p;
p = h[x].next;
while (p != NULL)
{
if (p -> num == y)
{
return p -> len;
}
p = p -> next;
}
return -1;
}
int Dijkstra(int start, int find, int n)
{
int i, j;
DijInitail(start, n);
ins[start] = true;
for (i = 1; i < n; i++) //n-1次
{
int addnum = start; //记录此时V中最靠近源点的节点
int minlen = 1000000; //以及源点到该节点的长度
for (j = 1; j <= n; j++) //源点从V中挑一个最近节点
{
if (ins[j]) continue; //这个节点在S中,跳过
if (dist[j] < minlen) //当前到源点距离最小的节点
{
addnum = j;
minlen = dist[j]; //更新离源点最近节点的信息
}
}
ins[addnum] = true;
for (j = 1; j <= n; j++) //新来的节点向外得到路径信息
{ //并维护dist
if (ins[j]) continue;
/* 从源点到当前节点next的距离 + 当前节点next到某个相邻节点j的距离。*/
/* 如果小于目前源点到节点j的最短距离dist[j],更新dist[j]。 */
int pathlen = x_HasPath_y(addnum, j);
if (pathlen == -1) continue;
int t = dist[addnum] + pathlen;
if (t < dist[j])
{
dist[j] = t;
pre[j] = addnum;
}
}
}
return dist[find];
}
Dijkstra 多点到多点(邻接矩阵实现):
int DijGraph[105][105]; //节点i和j之间的距离:DijGraph[i][j]
int pre[105]; //最短路节点的前继节点(查询最短路)
int dist[105]; //源点到每个节点的最短路距离
bool ins[105]; //节点i是否位于已查询节点集合S
/*
初始化函数
*/
void Initial(int n)
{
for (int i = 1; i <= n; i++)
{
ins[i] = false;
pre[i] = -1;
for (int j = 1; j <= n; j++)
{
if (i == j) DijGraph[i][j] = 0;
else DijGraph[i][j] = 1000000;
}
}
}
void Dijkstra(int n, int b, int e)
{
int i, j;
for (i = 1; i <= n; i++) {
dist[i] = DijGraph[b][i];
}
dist[b] = 0;
ins[b] = true;
for (i = 2; i <= n; i++)
{
int next = b;
int minlen = 1000000;
for (j = 1; j <= n; j++)
{
if (ins[j]) continue;
if (dist[j] < minlen) {
next = j;
minlen = dist[j];
}
}
ins[next] = true;
for (j = 1; j <= n; j++)
{
if (ins[j]) continue;
int t = dist[next] + DijGraph[next][j];
if (t < dist[j])
{
dist[j] = t;
pre[j] = next;
}
}
}
}
Prim
int Primgh[10000][10000]; //存储图
bool refer[10005]; //判断是否在Enew中
/*
用于初始化的函数
*/
void Initial(int n, int m)
{
int i, j;
for (i = 1; i <= n; i++)
{
refer[i] = false;
for (j = 1; j <= n; j++)
{
if (i == j) {
Primgh[i][j] = 0;
}
else Primgh[i][j] = maxn;
}
}
int u, v, w;
for (i = 1; i <= m; i++)
{
cin >> u >> v >> w;
Primgh[u][v] = w;
Primgh[v][u] = w;
}
}
/*
Prim算法,主体部分
*/
int Prim_Alg(int n, int m)
{
Initial(n, m);
int i, j, k;
int ans = 0;
//最小生成树的路径长度
refer[1] = true;
//选择点1出发
//最小生成树一共有n-1条边,因此需要寻找最短边n-1次,基于贪心
for (i = 1; i <= n-1; i++)
{
int minlen = maxn;
//minlen: 在Vnew中的节点所连接的边中,寻找cost最小的边
int rcd = 1;
//cost最小的边有两个节点,rcd记录其中的不属于Vnew的节点
for (j = 1; j <= n; j++)
{
if (!refer[j]) continue;
//遍历Vnew中的所有节点
int len1 = maxn;
//对于Vnew中的某个节点来说,所连接的最短的路径cost大小
int rcd1 = 1;
//对于Vnew中的某个节点来说,rcd记录的节点
//贪心,寻找这个节点连接的cost最小的路径
for (k = 1; k <= n; k++)
{
if (!refer[k])
{
if (Primgh[j][k] < len1) {
len1 = Primgh[j][k];
rcd1 = k;
}
}
}
if (len1 < minlen) {
//判断贪心得到的路径是否是全局cost最短
minlen = len1;
rcd = rcd1;
}
}
/*Debug:*/
//char check = 'A'+rcd-1;
//cout << "rcd: " << check << endl;
//cout << "minlen: " << minlen << endl;
refer[rcd] = true;
//贪心求出cost最小的路径,rcd记录的节点入Vnew
rcd = 1;
//重置rcd
ans += minlen;
}
return ans;
}
Kruskal
struct stedge
{
int u, v, len;
};
bool cmp(stedge s1, stedge s2)
{
return s1.len < s2.len;
}
stedge seg[100000];
int fa[100005];
void Inifa(int n)
{
for (int i = 1; i <= n; i++)
{
fa[i] = i;
}
}
int findfa(int x)
{
int f = x;
while (f != fa[f])
{
f = fa[f];
}
int i = x, j;
while (i != f)
{
j = fa[i];
fa[i] = f;
i = j;
}
return f;
}
int main()
{
int i, n, m;
cin >> n >> m;
Inifa(n);
int u, v, w;
for (i = 1; i <= m; i++)
{
cin >> u >> v >> w;
seg[i].u = u;
seg[i].v = v;
seg[i].len = w;
}
sort(seg+1, seg+m+1, cmp);
int cnt = 0, lencnt = 0;
for (i = 1; i <= m; i++)
{
int fa1 = findfa(seg[i].u);
int fa2 = findfa(seg[i].v);
if (fa1 == fa2) continue;
cnt++;
lencnt += seg[i].len;
fa[fa1] = fa2; //一定是祖先找祖先合并
if (cnt == n-1) break;
}
cout << lencnt;
return 0;
}
树
树的序遍历
//
// main.cpp
// Tree2
//
// Created by wasdns on 16/12/19.
// Copyright © 2016年 wasdns. All rights reserved.
//
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
struct Node
{
int num;
Node *l, *r;
};
int preorder[100005];
int midorder[100005];
int aftorder[100005];
Node *node[100005];
int n;
int tot = 1; //记录aftorder
/*
Ininode函数:用于初始化节点
*/
void Ininode()
{
int i;
for (i = 1; i <= n; i++)
{
Node *p = new Node;
p -> num = i;
p -> l = NULL;
p -> r = NULL;
node[i] = p;
}
}
/*
FindRoot函数:根据后序、中序建树
*/
Node* FindRoot(int aft_l, int aft_r, int mid_l, int mid_r)
{
if (aft_r - aft_l < 0) return NULL;
Node *root = new Node;
root -> num = aftorder[aft_r];
if (aft_l == aft_r)
{
root -> l = NULL;
root -> r = NULL;
return root;
}
int index;
for (index = mid_l; index <= mid_r; index++)
{
if (midorder[index] == aftorder[aft_r]) break;
}
root -> r = FindRoot(aft_r-(mid_r-index), aft_r-1, index+1, mid_r);
root -> l = FindRoot(aft_l, aft_r-(mid_r-index)-1, mid_l, index-1);
return root;
}
/*
FindRoot函数:根据先序和中序建树。
*/
Node* FindRoot1(int pre_l, int pre_r, int mid_l, int mid_r)
{
if (pre_r - pre_l < 0) return NULL;
Node* root = new Node;
/*将先序列表中最左边的节点作为root*/
root -> num = preorder[pre_l];
if (pre_l == pre_r)
{
root -> l = NULL;
root -> r = NULL;
return root;
}
/*在中序中找到root所在的位置,用index表示*/
int index;
for (index = mid_l; index <= mid_r; index++)
{
if (midorder[index] == preorder[pre_l]) break;
}
/*说明:利用index进行递归,分成左子树和右子树。 */
/*同时将先序序列和后序序列进行划分,将位置作为递归的参数。*/
root -> l = FindRoot1(pre_l+1, pre_l+(index-mid_l), mid_l, index-1);
root -> r = FindRoot1(pre_l+(index-mid_l)+1, pre_r, index+1, mid_r);
return root;
}
/*
CalAftorder函数:根据给定的树来计算后序序列
*/
void CalAftorder(Node *head)
{
if (head == NULL) return ;
CalAftorder(head -> l);
CalAftorder(head -> r);
aftorder[tot++] = head -> num;
}
/*
CalPreorder函数:根据给定的树来计算先序序列
*/
void CalPreorder(Node *head)
{
if (head == NULL) return ;
preorder[tot++] = head -> num;
CalPreorder(head -> l);
CalPreorder(head -> r);
}
/*
Print函数:输出先序、后序序列
*/
void Print()
{
int i;
for (i = 1; i <= n; i++) {
cout << preorder[i] << " ";
}
cout << endl;
for (i = 1; i <= n; i++) {
cout << aftorder[i] << " ";
}
cout << endl;
}
优先队列 STL
值大 => 优先级高
#include <iostream>
#include <queue>
using namespace std;
priority_queue<int> q;
值小 => 优先级高
#include <iostream>
#include <functional>
#include <queue>
using namespace std;
struct cmp
{
bool operator() (int x,int y) {
return x > y;
}
};
priority_queue<int, vector<int>, cmp> q;
结构体:
struct node
{
int x, y;
friend bool operator < (node a, node b)
{
return a.x > b.x; //结构体中,x小的优先级高
}
};
priority_queue<node>q;//定义方法
//在该结构中,y为值, x为优先级。
//通过自定义operator<操作符来比较元素中的优先级。
//在重载”<”时,最好不要重载”>”,可能会发生编译错误
手写Heap堆:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int size = 0;
int Heap[100005];
/*
维护函数keep
*/
void keep(int son)
{
int fa = son/2;
while (fa >= 1 && Heap[fa] > Heap[son])
{
int t = Heap[fa];
Heap[fa] = Heap[son];
Heap[son] = t;
son = fa;
fa = fa/2;
}
}
/*
初始化函数IniHeap
*/
void IniHeap()
{
int i;
for (i = size; i >= 1; i--)
{
keep(i);
}
}
/*
InsProtect函数:插入新节点并维护
*/
void InsProtect(int a)
{
Heap[++size] = a;
keep(size);
}
/*
DelMin函数:删除最小元并维护
*/
int DelMin()
{
int minum = Heap[1];
int t = Heap[size];
Heap[1] = t;
size--;
IniHeap();
return minum;
}
Hash函数
Index哈希函数例1:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn =1000005;
int num[maxn];
char a[maxn],str[10];
int IndexHash(char *key)
{
int hashval = 0;
while (*key != '\0') hashval = (hashval<<5) + *key++;
return hashval;
}
int main()
{
//freopen("data.txt","r",stdin);
//freopen("2.txt","w",stdout);
int n,m,k,i,p = 0;
memset(str,0,sizeof(str));
scanf("%d%d%d",&n,&m,&k);
scanf("%s",a);
for (i = 0;i <= n - k;i++)
{
strncpy(str,a + i,k);
int hashval = IndexHash(str);
num[p++] = hashval;
}
sort(num,num+p);
int res = 1;
for (i = 1;i < p;i++)
{
if (num[i] != num[i-1]) res++;
}
printf("%d\n",res);
return 0;
}
例2:
//
// main.cpp
// searchme
//
// Created by wasdns on 16/12/12.
// Copyright © 2016年 wasdns. All rights reserved.
//
#include <iostream>
#include <cstdio>
#include <cstring>
#define mod 999983 //int范围内取最大的素数
#define maxn 1000005
using namespace std;
/*
Hash函数:IndexHash
*/
int IndexHash(char *s)
{
int hashval = 0;
while (*s != '\0') {
hashval = (hashval << 5) + *s++;
}
return hashval % mod;
}
char searchname[maxn][10]; //你的名字
int head[maxn]; //邻接表的头数组
int lnext[maxn]; //邻接表的节点数组
int tot = 1; //第tot个字符串
/*
AddNode创建邻接表函数:
在head[hashval]中存指向单链表的指针
插入时,现有head的值存入lnext[tot]
之后使head[hashval]成为新的节点
相当于不断在链表的首部进行插入
*/
void AddNode(int hashval)
{
lnext[tot] = head[hashval];
head[hashval] = tot;
tot++;
}
/*
询问函数:
通过IndexHash得到hash值
利用head[hashval]找到指向对应hash值的单链表
遍历单链表,找到 -> 计数器++。
*/
void query(int q)
{
int cnt = 0;
for (int i = 1; i <= q; i++)
{
int hashval = 0;
char findname[10];
scanf("%s", findname);
hashval = IndexHash(findname);
for (int j = head[hashval]; j != -1; j = lnext[j])
{
if (strcmp(searchname[j], findname) == 0) {
cnt++;
}
}
}
printf("%d\n", cnt);
}
int main()
{
memset(head, -1, sizeof(head));
memset(lnext, -1, sizeof(lnext));
int n, m;
cin >> n >> m;
int i;
for (i = 1; i <= n; i++)
{
scanf("%s", searchname[i]);
int hashval = IndexHash(searchname[i]);
AddNode(hashval);
}
cout << endl;
query(m);
return 0;
}
2016/12/29
Open Data Structure Templates的更多相关文章
- [LeetCode] All O`one Data Structure 全O(1)的数据结构
Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...
- [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计
Design a data structure that supports the following two operations: void addWord(word) bool search(w ...
- [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计
Design and implement a TwoSum class. It should support the following operations:add and find. add - ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
- Mesh Data Structure in OpenCascade
Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...
- ✡ leetcode 170. Two Sum III - Data structure design 设计two sum模式 --------- java
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- leetcode Add and Search Word - Data structure design
我要在这里装个逼啦 class WordDictionary(object): def __init__(self): """ initialize your data ...
- Java for LeetCode 211 Add and Search Word - Data structure design
Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...
- HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...
随机推荐
- MapReduce的核心资料索引 [转]
转自http://prinx.blog.163.com/blog/static/190115275201211128513868/和http://www.cnblogs.com/jie46583173 ...
- servlet 之 response 回复 字节流 字符流
重定向 设置状态吗为302 添加响应头Location(告诉他重定向到哪里去) //response.setStatus(302); //添加响应头Locatio ...
- 设计模式--单例模式Singleton(创建型)
单例模式很显然是定义一个类,这个类在程序中只有唯一的实例对象.一般单例类的构造函数是私有的,只能通过调用静态函数GetInstance来获取实例. 一.单例模式有三种:懒汉式单例.饿汉式单例.登记式单 ...
- 校园网搭建HUSTOJ记录
上学期和网管中心的老师说过很多次--要在校园网上搭OJ,当时那边老师说要等"虚拟化搞好了以后才能搭".直到上周,终于在校园网上申请到了一个虚拟主机,4核,10G内存,100G硬盘, ...
- Magento 创建新的数据实体 model 、 resource 和 collection 文件
一.创建model文件 class Bestbuy_PrepaidCard_Model_Used extends Mage_Core_Model_Abstract { protected ...
- .NET LINQ 投影运算
投影运算 投影是指将对象转换为一种新形式的操作,该形式通常只包含那些将随后使用的属性. 通过使用投影,您可以构建依据每个对象生成的新类型. 您可以映射属性,并对该属性执行数学函数. 还可以在 ...
- iOS之ToolBar定制
ToorBar的定制 在诸如社区类的app里面,很多都涉及到用户发布消息,如现今最流行的新浪微博,每条信息底部都会有个工具条,正如下图所示,有转发.评论和点赞三个按钮的工具条. 结构 1.作为一个独立 ...
- 使用DotNetBar制作漂亮的WinFrom界面,自定义AgileEAS.NET SOA平台WinClient主界面
一.前言 AgileEAS.NET SOA 中间件平台是一款基于基于敏捷并行开发思想和Microsoft .Net构件(组件)开发技术而构建的一个快速开发应用平台.用于帮助中小型软件企业建立一条适合市 ...
- 使用samba实现linux与windows共享(测试成功)
samba服务器搭建 实现linux与windows文件共享有很多种方法,诸如wpc,vmtools等,今天我来介绍我在rehat系统中实验成功并且现在在用的的方法,直接给出操作步骤: ...
- linux 下如何 makefile
本文目的: 尝试着把makefile讲解清楚.非原创,仅仅是学习笔记和备忘录之用. makefile 的目的和好处: 一个工程中的源文件不计数,其按类型.功能.模块分别放在若干个目录中,makefil ...