关于我们为什么需要Schema Registry?

参考,

https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/

https://www.confluent.io/blog/schema-registry-kafka-stream-processing-yes-virginia-you-really-need-one/

https://www.confluent.io/blog/stream-data-platform-2/

Use Avro as Your Data Format

We think Avro is the best choice for a number of reasons:

  1. It has a direct mapping to and from JSON
  2. It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
  3. It is very fast.
  4. It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
  5. It has a rich, extensible schema language defined in pure JSON
  6. It has the best notion of compatibility for evolving your data over time.

 

One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:

{
"time": 1424849130111,
"customer_id": 1234,
"product_id": 5678,
"quantity":3,
"payment_type": "mastercard"
}

It might have a schema like this that defines these five fields:

{
"type": "record",
"doc":"This event records the sale of a product",
"name": "ProductSaleEvent",
"fields" : [
{"name":"time", "type":"long", "doc":"The time of the purchase"},
{"name":"customer_id", "type":"long", "doc":"The customer"},
{"name":"product_id", "type":"long", "doc":"The product"},
{"name":"quantity", "type":"int"},
{"name":"payment",
"type":{"type":"enum",
"name":"payment_types",
"symbols":["cash","mastercard","visa"]},
"doc":"The method of payment"}
]
}

 

Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.

The schemas end up serving a number of critical purposes:

  1. They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
  2. They document the usage of the event and the meaning of each field in the “doc” fields.
  3. They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.

 

The Need For Schemas

Robustness

One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.

Clarity and Semantics

Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.

Compatibility

Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.

Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.

Schemas are a Conversation

However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.

Schemas Eliminate The Manual Labor of Data Science

It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.

 

KIP-69 - Kafka Schema Registry

pending状态,这个KIP估计会被cancel掉

因为confluent.inc已经提供相应的方案,

https://github.com/confluentinc/schema-registry

http://docs.confluent.io/3.0.1/schema-registry/docs/index.html

比较牛逼的是,有人为这个开发了UI,

https://www.landoop.com/blog/2016/08/schema-registry-ui/

本身使用,都是通过http进行Schema的读写,比较简单

 

设计,

参考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

主备架构,通过zk来选主

每个schema需要一个唯一id,这个id也通过zk来保证递增

schema存在kafka的一个特殊的topic中,_schemas,一个单partition的topic

我的理解,在注册和查询schema的时候,是通过local caches进行检索的,kafka的topic可以用于replay来重建caches

Apache Kafka - Schema Registry的更多相关文章

  1. Kafka Schema Registry | 学习Avro Schema

    1.目标 在这个Kafka Schema Registry教程中,我们将了解Schema Registry是什么以及为什么我们应该将它与Apache Kafka一起使用.此外,我们将看到Avro架构演 ...

  2. Kafka topic Schema version mismatch error - org.apache.kafka.common.protocol.types.SchemaException

    Problem description: There is error messge when run spark app using spark streaming Kafka version 0. ...

  3. Spark(四十五):Schema Registry

    很多时候在流数据处理时,我们会将avro格式的数据写入到kafka的topic,但是avro写入到kafka的时候,数据有可能会与版本升级,也就是schema发生变化,此时如果消费端,不知道哪些数据的 ...

  4. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  5. How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue

    Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...

  6. Flafka: Apache Flume Meets Apache Kafka for Event Processing

    The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...

  7. apache kafka系列之客户端开发-java

    1.依赖包 <dependency>            <groupId>org.apache.kafka</groupId>            <a ...

  8. Apache Kafka - How to Load Test with JMeter

    In this article, we are going to look at how to load test Apache Kafka, a distributed streaming plat ...

  9. Apache Kafka是数据库吗?

    最近思路有些枯竭,找些务虚的话题来凑.本文内容完全来自于Martin Kelppmann在2019年Kafka伦敦峰会上的演讲.顺便提一句,Kelppmann是<Designing Data-I ...

随机推荐

  1. Python面向对象(一)

    面向对象 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向对象是一种编程 ...

  2. linux c 笔记-2 Hello World & main函数

    按照惯例撸一个hello_world.c #include <stdio.h> int main(int argc, char * argv[]) { printf("hello ...

  3. TraceView进行性能分析

    一.TraceView概述 TraceView 是 Android 平台配备一个很好的性能分析的工具.它可以通过图形化的方式让我们了解我们要跟踪的程序的性能,并且能具体到 method. 详细内容参考 ...

  4. W7无法更新

    从提示中可以推断可能服务中没有启动更新服务,当即开始>>>运行>>>services.msc 打开服务管理,找到Windows Update服务,启动它.重新更新服 ...

  5. C++虚函数浅探

    C++中和虚函数(Virtual Function)密切相关的概念是"动态绑定"(Dynamic Binding),与之相对的概念是"静态绑定"(Static ...

  6. java 深入技术二(Collection)

    1. java集合 存储和管理多个java对象 包括很多java类和接口 Collection List                              Set ArrayList  Lin ...

  7. 7.openstack之mitaka搭建dashboard

    部署控制面板dashboard 控制节点 1.安装软件包 yum install openstack-dashboard -y 2.配置 vim /etc/openstack-dashboard/lo ...

  8. 拨打电话tel: 跳转到邮件mailto:(html)

    拨打电话 <a href="tel://0571866000">0571-866000</a> 跳转到邮件 <a href="mailto: ...

  9. 使用 CUDA范例精解通用GPU编程 配套程序的方法

    用vs新建一个cuda的项目,然后将系统自动生成的那个.cu里头的内容,除了头文件引用外,全部替代成先有代码的内容. 然后程序就能跑了. 因为新建的是cuda的项目,所以所有的头文件和库的引用系统都会 ...

  10. Sublime Text 2 增加python版本

    当系统中装有多个python版本时,Sublime Text 2  使用哪个版本需要手动添加 键入一下内容,path输入python的安转路径 保存至Python27.sublime-build文件 ...