python-python基础4
本章内容:
- 装饰器
- 生成器
- 迭代器
- json & pickle 模块
- 软件目录结构规范
一、装饰器
import time def printtime(f):
def warpper(*args,**kwargs):
f(*args,**kwargs)
print("time:", time.ctime())
return warpper @printtime #hello=printtime(hello)
def hello():
print("Hello World!") hello()
执行结果:
Hello World!
time: Tue Feb 18 02:41:24 2020
ser_status = False #用户登录了就把这个改成True def login(func): #把要执行的模块从这里传进来 def inner(*args,**kwargs):#再定义一层函数
_username = "alex" #假装这是DB里存的用户信息
_password = "abc!23" #假装这是DB里存的用户信息
global user_status if user_status == False:
username = input("user:")
password = input("pasword:") if username == _username and password == _password:
print("welcome login....")
user_status = True
else:
print("wrong username or password!") if user_status == True:
func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能 return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 def home():
print("---首页----") @login
def america():
#login() #执行前加上验证
print("----欧美专区----") def japan():
print("----日韩专区----") # @login
def henan(style):
'''
:param style: 喜欢看什么类型的,就传进来
:return:
'''
#login() #执行前加上验证
print("----河南专区----") home()
# america = login(america) #你在这里相当于把america这个函数替换了
henan = login(henan) # #那用户调用时依然写
america() henan("3p")
示例二:(带参数的装饰器)
import time
user,passwd = 'alex','abc123'
def auth(auth_type):
print("auth func:",auth_type)
def outer_wrapper(func):
def wrapper(*args, **kwargs):
print("wrapper func args:", *args, **kwargs)
if auth_type == "local":
username = input("Username:").strip()
password = input("Password:").strip()
if user == username and passwd == password:
print("\033[32;1mUser has passed authentication\033[0m")
res = func(*args, **kwargs) # from home
print("---after authenticaion ")
return res
else:
exit("\033[31;1mInvalid username or password\033[0m")
elif auth_type == "ldap":
print("搞毛线ldap,不会。。。。") return wrapper
return outer_wrapper def index():
print("welcome to index page")
@auth(auth_type="local") # home = wrapper() home=auth(home(auth_type="local"))
def home():
print("welcome to home page")
return "from home" @auth(auth_type="ldap")
def bbs():
print("welcome to bbs page") index()
print(home()) #wrapper()
bbs()
#_*_coding:utf-8_*_ user_status = False #用户登录了就把这个改成True def login(auth_type): #把要执行的模块从这里传进来
def auth(func):
def inner(*args,**kwargs):#再定义一层函数
if auth_type == "qq":
_username = "alex" #假装这是DB里存的用户信息
_password = "abc!23" #假装这是DB里存的用户信息
global user_status if user_status == False:
username = input("user:")
password = input("pasword:") if username == _username and password == _password:
print("welcome login....")
user_status = True
else:
print("wrong username or password!") if user_status == True:
return func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能
else:
print("only support qq ")
return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 return auth def home():
print("---首页----") @login('qq')
def america():
#login() #执行前加上验证
print("----欧美专区----") def japan():
print("----日韩专区----") @login('weibo')
def henan(style):
'''
:param style: 喜欢看什么类型的,就传进来
:return:
'''
#login() #执行前加上验证
print("----河南专区----") home()
# america = login(america) #你在这里相当于把america这个函数替换了
#henan = login(henan) # #那用户调用时依然写
america() # henan("3p")
二、生成器
列表生成式
>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
这就是列表生成式
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
生成器:只有在调用的时候,才会生成相应的数据
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过__next__()
函数获得generator的下一个返回值:
c=(i for i in range(5000))
print(c.__next__())
print(c.__next__())
print(c.__next__())
print(c.__next__())
print(c.__next__())
执行结果:
0
1
2
3
4
正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator后,基本上永远不会调用__next__()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done' fib(10)
执行结果:
1
1
2
3
5
8
13
21
34
55
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max):
n,a,b = 0,0,1
while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1
return 'done' f=fib(100)
print(f)
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
执行结果:
<generator object fib at 0x0000023EE4A1DDD0>
1
1
2
3
5
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
f=fib(100)
print(f)
print(f.__next__())
print("========")
print(f.__next__())
print(f.__next__())
print(f.__next__())
print("其他事")
print(f.__next__())
执行结果:
<generator object fib at 0x000001D8B238DDD0>
1
========
1
2
3
其他事
5
在上面fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
for i in f:
print(i)
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
def fib(max):
n,a,b = 0,0,1
while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1
return 'done' f=fib(10)
while True:
try:
x=f.__next__()
print("num:",x)
except StopIteration as e:
print('Generator return value:', e.value)
break
执行结果:
num: 1
num: 1
num: 2
num: 3
num: 5
num: 8
num: 13
num: 21
num: 34
num: 55
Generator return value: done
示例:(生成器并行)
import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("alex")
三、迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
*可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
Json模块提供了四个功能:dumps、dump、loads、load
pickle模块提供了四个功能:dumps、dump、loads、load
如果想要把一个字典写入入文件,会报错:
info={"name":"jehu","age":25,"addr":"shenzhen"} with open("json_test","w") as f:
f.write(info)
报错:TypeError: write() argument must be str, not dict
一般只能用字符串的格式写入文件,所以我们用json来把字典序列化
import json info={"name":"jehu","age":25,"addr":"shenzhen"}
info_j=json.dumps(info) with open("json_test","w") as f:
f.write(info_j)
这样就可以写入了
我们要打开这个被写入的文件“json_test”,然后反序列化读出某个键的值:
import json with open("json_test","r") as f:
data=f.read()
data_j=json.loads(data)
print(data_j["addr"])
执行结果:
shenzhen
json只能处理字典等简单的数据类型,而pickle能处理复杂的
五、软件目录结构规范
为什么要设计好目录结构?
"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:
- 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
- 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。
我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:
- 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
- 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。
所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。
目录组织方式
关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。
这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。
假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:
Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README
简要解释一下:
bin/
: 存放项目的一些可执行文件,当然你可以起名script/
之类的也行。foo/
: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/
存放单元测试代码; (3) 程序的入口最好命名为main.py
。docs/
: 存放一些文档。setup.py
: 安装、部署、打包的脚本。requirements.txt
: 存放软件依赖的外部Python包列表。README
: 项目说明文件。
除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt
,ChangeLog.txt
文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章。
下面,再简单讲一下我对这些目录的理解和个人要求吧。
关于README的内容
这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。
它需要说明以下几个事项:
- 软件定位,软件的基本功能。
- 运行代码的方法: 安装环境、启动命令等。
- 简要的使用说明。
- 代码目录结构说明,更详细点可以说明软件的基本原理。
- 常见问题说明。
我觉得有以上几点是比较好的一个README
。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。
可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。
关于requirements.txt和setup.py
setup.py
一般来说,用setup.py
来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。
这个我是踩过坑的。
我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:
- 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
- Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
- 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
- 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。
setup.py
可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。
setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py
当然,简单点自己写个安装脚本(deploy.sh
)替代setup.py
也未尝不可。
requirements.txt
这个文件存在的目的是:
- 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在
setup.py
安装依赖时漏掉软件包。 - 方便读者明确项目使用了哪些Python包。
这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10
这种格式,要求是这个格式能被pip
识别,这样就可以简单的通过 pip install -r requirements.txt
来把所有Python包依赖都装好了。具体格式说明: 点这里。
关于配置文件的使用方法
注意,在上面的目录结构中,没有将conf.py
放在源码目录下,而是放在docs/
目录下。
很多项目对配置文件的使用做法是:
- 配置文件写在一个或多个python文件中,比如此处的conf.py。
- 项目中哪个模块用到这个配置文件就直接通过
import conf
这种形式来在代码中使用配置。
这种做法我不太赞同:
- 这让单元测试变得困难(因为模块内部依赖了外部配置)
- 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
- 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖
conf.py
这个文件。
所以,我认为配置的使用,更好的方式是,
- 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
- 程序的配置也是可以灵活控制的。
能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。
所以,不应当在代码中直接import conf
来使用配置文件。上面目录结构中的conf.py
,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py
启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py
你可以换个类似的名字,比如settings.py
。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml
之类的。
作业需求:
模拟实现一个ATM + 购物商城程序
- 额度 15000或自定义
- 实现购物商城,买东西加入 购物车,调用信用卡接口结账
- 可以提现,手续费5%
- 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
- 支持多账户登录
- 支持账户间转账
- 记录每月日常消费流水
- 提供还款接口
- ATM记录操作日志
- 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
- 用户认证用装饰器
示例代码 https://github.com/triaquae/py3_training/tree/master/atm
简易流程图:https://www.processon.com/view/link/589eb841e4b0999184934329
python-python基础4的更多相关文章
- Python文件基础
===========Python文件基础========= 写,先写在了IO buffer了,所以要及时保存 关闭.关闭会自动保存. file.close() 读取全部文件内容用read,读取一行用 ...
- 3.Python编程语言基础技术框架
3.Python编程语言基础技术框架 3.1查看数据项数据类型 type(name) 3.2查看数据项数据id id(name) 3.3对象引用 备注Python将所有数据存为内存对象 Python中 ...
- Python爬虫基础
前言 Python非常适合用来开发网页爬虫,理由如下: 1.抓取网页本身的接口 相比与其他静态编程语言,如java,c#,c++,python抓取网页文档的接口更简洁:相比其他动态脚本语言,如perl ...
- 小白必看Python视频基础教程
Python的排名从去年开始就借助人工智能持续上升,现在它已经成为了第一名.Python的火热,也带动了工程师们的就业热.可能你也想通过学习加入这个炙手可热的行业,可以看看Python视频基础教程,小 ...
- Python爬虫基础之requests
一.随时随地爬取一个网页下来 怎么爬取网页?对网站开发了解的都知道,浏览器访问Url向服务器发送请求,服务器响应浏览器请求并返回一堆HTML信息,其中包括html标签,css样式,js脚本等.我们之前 ...
- 零基础学Python--------第2章 Python语言基础
第2章 Python语言基础 2.1 Python语法特点 2.11注释 在Python中,通常包括3种类型的注释,分别是单行注释.多行注释和中文编码声明注释. 1.单行注释 在Python中,使用 ...
- Python学习基础笔记(全)
换博客了,还是csdn好一些. Python学习基础笔记 1.Python学习-linux下Python3的安装 2.Python学习-数据类型.运算符.条件语句 3.Python学习-循环语句 4. ...
- Python数据分析基础教程
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...
- Python数据分析基础PDF
Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手 ...
- Python的基础语法(一)
0. 前言 最近正在重新整理Python的基础知识,以便更好地学习新知识.这一部分主要是讲述Python基础语法的演示.下面的语法都是基于Python3的语法. 1. 注释 注释:Python的注释方 ...
随机推荐
- pwn之exp问题反馈和ASLR认知
如上问题是我执行脚本遇到的,改了脚本几次,依然没变,嗯...... 当我用了百度,据说是ALSR没关,的确,这导致我脚本中的addr是一个随机数,从而攻击失败 ##0x00:引用一下查到的知识:在传统 ...
- rtt之通用bootloader
目前只支持F1/F4;使用步骤 1 在官网注册产品,根据系列设定参数,接收邮箱,点击生成就可以在自己的邮箱中收到对应的bootloader.bin文件.用jlink就可以将其烧写进单片机. 2 存储被 ...
- 2018 最新注册码【激活码】、在线激活 pycharm 完整方法(亲测有效)【2018.06.01 重大更新!!!!】
2018-06-01修改如下: 原来方法的第二种还是有效的,操作如下 (1)更新hosts文件(可以直接下载,然后解压缩) host文件地址 hosts文件,在windows中的地址为: 替换host ...
- Github 结合 Hexo 搭建轻量博客
http://www.open-open.com/lib/view/open1481532171287.html 开始 Hexo 是一个快速.简洁且高效的博客框架.Hexo 使用 Markdown(或 ...
- [原]greenplum安装详细过程
今天又帮其他项目装了一遍GP,加上之前的两次,这是第三次了,虽然每次都有记录,但这次安装还是发现漏写了一些步骤,在此详细记录一下,需要的童鞋可以借鉴. 1.准备 这里准备了4台服务器,1台做maste ...
- php虚拟主机配置( 输入网址 对应 ip地址)
1.启动http_vhost.conf文件 在httpd-conf中,#virtual hosts 去掉前面的井号 # Includeconf/extra/httpd_vhost.conf 2.配置h ...
- [经验] 如何将 Java 项目发布到云服务器上并可以访问
环境: 云服务器 Linux centos7.6 1: 安装 Tomcat (apache-tomcat-9.0.26.tar.gz) 下载压缩包 --> 通过SSH上传到云服务器 --> ...
- ES建立索引步骤, 1,index 2.mapping 3,别名
1.建立索引PUT /index_trans_detail 2.建立mappingPOST /index_trans_detail/type_trans_detail/_mapping{ " ...
- java基础课程笔记 static 主函数 静态工具类 classpath java文档注释 静态代码块 对象初始化过程 设计模式 继承 子父类中的函数 继承中的构造函数 对象转型 多态 封装 抽象类 final 接口 包 jar包
Static那些事儿 Static关键字 被static修饰的变量成为静态变量(类变量) 作用:是一个修饰符,用于修饰成员(成员变量,成员方法) 1.被static修饰后的成员变量只有一份 2.当成员 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:标题
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...