数据分析你需要知道的操作:ETL和ELT
如果您接触过数据仓库, 您可能会使用 ETL (Extract、 Transform、 Load) 或 ELT ( Extract、Load、 Transform) 将您的数据从不同的来源提取到数据仓库中。这些是移动数据或集成数据的常用方法, 以便您可以关联来自不同来源的信息, 将数据安全地存储在一个位置, 并使公司的成员能够从不同业务部门查看综合数据。ETL和ELT两个术语的区别与过程的发生顺序有关。这些方法都适合于不同的情况。
一、什么是ETL?
ETL是用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
ETL是构建数据仓库的最重要的环节,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库。
ETL架构的特殊优势:
ETL可以分担数据库系统的负载,可采用单独的硬件服务器部署
ETL相对ELT架构可以实现更为复杂的数据转化逻辑
ETL与底层的数据库数据存储无关
二、什么是ELT?
ELT只负责提供图形化的界面来设计业务规则,数据的整个加工过程都在目标和源的数据库之间流动,ELT协调相关的数据库系统来执行相关的应用,数据加工过程既可以在源数据库端执行,也可以在目标数据仓库端执行(主要取决于系统的架构设计和数据属性)。当ETL过程需要提高效率,则可以通过对相关数据库进行调优,或者改变执行加工的服务器就可以达到。ELT 通常发生在 NoSQL 数据库中,具有处理非结构化数据的能力。一般数据库厂商会也会力推该种架构,像Oracle和Teradata都极力宣传ELT架构。
ELT架构的特殊优势:
ELT主要通过数据库引擎来实现系统的可扩展性
ELT可以保持所有的数据始终在数据库当中,避免数据的加载和导出,从而保证效率,提高系统的可监控性。
ELT可以根据数据的分布情况进行并行处理优化,并可以利用数据库的固有功能优化磁盘I/O。
ELT的可扩展性取决于数据库引擎和其硬件服务器的可扩展性。
通过对相关数据库进行性能调优,ELT过程获得3到4倍的效率提升一般不是特别困难。
三、总结
经过这些描述后可能会让您怀疑哪种方法更好。事实上, 在不同的情况下, 这些方法中的每一种都有优势, 最好的解决方案取决于你的项目情况。ELT在以下情况中,配合ETL工具将会将会达到更好的效果:
1、当您想要执行复杂的计算时,ETL工具比数据仓库或数据池更有效
2、如果要在加载到目标存储之前进行大量数据清理。ETL是一种更好的解决方案,因为您不会将不需要的数据移动到目标。
3、当您仅使用结构化数据或传统结构化数据仓库时。ETL工具通常最有效地将结构化数据从一个环境移动到另一个环境。
4、当你想要扩展补充数据时。如果要在将数据移动到目标存储时扩展补充数据,则需要使用ETL工具。例如,添加时间戳。
数据分析你需要知道的操作:ETL和ELT的更多相关文章
- 数据分析05 /pandas的高级操作
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...
- 使用 Hive 作为 ETL 或 ELT 工具
用来处理数据的 ETL 和 ELT 工具的概述 数据集成和数据管理技术已存在很长一段时间.提取.转换和加载(ETL)数据的工具已经改变了传统的数据库和数据仓库.现在,内存中转换 ETL 工具使得提取. ...
- Kettle学习系列之数据仓库、数据整合、ETL、ELT和EII之间的区别?
不多说,直接上干货! 在数据仓库领域里,的一个重要概念就是数据整合(data intergration).数据整合它就是把不同数据库中的数据整合到一起,对外提供统一的数据视图. 数据整合最典型的案例就 ...
- DataPipeline CTO陈肃:从ETL到ELT,AI时代数据集成的问题与解决方案
引言:2018年7月25日,DataPipeline CTO陈肃在第一期公开课上作了题为<从ETL到ELT,AI时代数据集成的问题与解决方案>的分享,本文根据陈肃分享内容整理而成. 大家好 ...
- 啥是ETL、ELT
ETL就是Extract.Transfrom.Load即抽取.转换.加载三个英文单词首字母的集合.抽取:就是从源系统抽取需要的数据,这些源系统可以是同构也可以是异构的:比如源系统可能是Excel电子表 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- python数据分析所需要了解的操作。
import pandas as pd data_forest_fires = pd.read_csv("data/forestfires.csv", encoding='gbk' ...
- 数据分析处理库Pandas——常用操作
DataFrame结构排序 备注:group列降序,data列升序. 合并相同项 查找相同项 添加一列,值是其他列的值进行相关操作后的值 删除列 Series结构替换值 一组值按照范围归类 归类后每类 ...
- MySQL数据分析(16)— 数据操作之增删改查
前面我们说学习MySQL要从三个层面,四大逻辑来学,三个层面就是库层面,表层面和数据层面对吧,数据库里放数据表,表里放数据是吧,大家可以回忆PPT中jacky的这图,我们已经学完了库层面和表层面,从本 ...
随机推荐
- P2486 [SDOI2011]染色 区间合并+树链剖分(加深对线段树的理解)
#include<bits/stdc++.h> using namespace std; ; struct node{ int l,r,cnt,lazy; node(,,,):l(l1), ...
- Codeforces Round#615 Div.3 解题报告
前置扯淡 真是神了,我半个小时切前三题(虽然还是很菜) 然后就开始看\(D\),不会: 接着看\(E\),\(dp\)看了半天,交了三次还不行 然后看\(F\):一眼\(LCA\)瞎搞,然后\(15m ...
- Django+Ajax+Mysql实现数据库数据的展示
最近老师让搞一个系统,仅仅展示一下数据库的数据 在做海底捞时,是交接的师兄的项目,用的语言是java,框架是SSM(Spring.SpringMVC.MyBatis),这次我准备用Python写,前端 ...
- OpenCV 特征描述
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #inclu ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- 搭建harbor企业级私有registry
主机环境要求 硬件Hardware Resource Capacity Description CPU minimal 2 CPU 4 CPU is prefered Mem minimal 4GB ...
- java生成饼图
pom.xml文件导入依赖包 <!-- https://mvnrepository.com/artifact/org.jfree/jfreechart --> <dependency ...
- Tuning xgboost in R:Part 1
第一次调整Boosting算法的参数可能是一个非常艰难的任务.有很多参数可供选择,调整不同的参数会有不同的结果产生.最好的调参可能是取决于数据.每当我得到一个新的数据集,我都会学到一些新的东西.对分类 ...
- 苹果又要召回iPhone 7!这到底是要闹哪样?
7!这到底是要闹哪样?" title="苹果又要召回iPhone 7!这到底是要闹哪样?"> 现在的苹果虽然刚刚收获了史上最赚钱的一个季度--营收和利润均创下史上最 ...
- 语言发展与python
编程语言的发展史(机械语言.汇编语言.高级语言) 机械语言:直接使用二进制与计算机沟通,直接操作硬件,执行效率高,开发效率低. 汇编语言:用简单的英文代替二进制,直接操作硬件,执行效率较机械语言低,开 ...