初学图像处理,做了一个车牌提取项目,本博客仅仅是为了记录一下学习过程,该项目只具备初级功能,还有待改善

第一部分:车牌倾斜矫正

# 导入所需模块
import cv2
import math
from matplotlib import pyplot as plt # 显示图片
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows() # 调整图片大小
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized # 加载图片
origin_Image = cv2.imread("./images/car_09.jpg")
rawImage = resize(origin_Image,height=500) # 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# sobel算子边缘检测(做了一个y方向的检测)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x) # 转回uint8
image = absX
# 自适应阈值处理
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))
# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
thresh_, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
cv_show('image1',image1) # 筛选出车牌位置的轮廓
# 这里我只做了一个车牌的长宽比在3:1到4:1之间这样一个判断
for i,item in enumerate(contours): # enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中
# cv2.boundingRect用一个最小的矩形,把找到的形状包起来
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
if (weight > (height * 1.5)) and (weight < (height * 4)) and height>50:
index = i
image2 = rawImage.copy()
cv2.drawContours(image2, contours, index, (0, 0, 255), 3)
cv_show('image2',image2)
# 参数:
#  https://blog.csdn.net/lovetaozibaby/article/details/99482973
# InputArray Points: 待拟合的直线的集合,必须是矩阵形式;
# distType: 距离类型。fitline为距离最小化函数,拟合直线时,要使输入点到拟合直线的距离和最小化。这里的 距离的类型有以下几种:
# cv2.DIST_USER : User defined distance
# cv2.DIST_L1: distance = |x1-x2| + |y1-y2|
# cv2.DIST_L2: 欧式距离,此时与最小二乘法相同
# cv2.DIST_C:distance = max(|x1-x2|,|y1-y2|)
# cv2.DIST_L12:L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
# cv2.DIST_FAIR:distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
# cv2.DIST_WELSCH: distance = c2/2(1-exp(-(x/c)2)), c = 2.9846
# cv2.DIST_HUBER:distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
# param: 距离参数,跟所选的距离类型有关,值可以设置为0。
#
# reps, aeps: 第5/6个参数用于表示拟合直线所需要的径向和角度精度,通常情况下两个值均被设定为1e-2.
# output :
#
# 对于二维直线,输出output为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。(即通常说的点斜式直线)
# 其中(vx, vy) 是直线的方向向量,(x, y) 是直线上的一个点。
# 斜率k = vy / vx
# 截距b = y - k * x # 直线拟合找斜率
cnt = contours[index]
image3 = rawImage.copy()
h, w = image3.shape[:2]
[vx, vy, x, y] = cv2.fitLine(cnt, cv2.DIST_L2, 0, 0.01, 0.01)
k = vy/vx
b = y-k*x
lefty = b
righty = k*w+b
img = cv2.line(image3, (w, righty), (0, lefty), (0, 255, 0), 2)
cv_show('img',img) a = math.atan(k)
a = math.degrees(a)
image4 = origin_Image.copy()
# 图像旋转
h,w = image4.shape[:2]
print(h,w)
#第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
M = cv2.getRotationMatrix2D((w/2,h/2),a,1)
#第三个参数:变换后的图像大小
dst = cv2.warpAffine(image4,M,(int(w*1),int(h*1)))
cv_show('dst',dst)
cv2.imwrite('car_09.jpg',dst)

第二部分:车牌号码提取

 # 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np # 显示图片
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows() def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized #读取待检测图片
origin_image = cv2.imread('./car_09.jpg')
resize_image = resize(origin_image,height=600)
ratio = origin_image.shape[0]/600
print(ratio)
cv_show('resize_image',resize_image) #高斯滤波,灰度化
image = cv2.GaussianBlur(resize_image, (3, 3), 0)
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv_show('gray_image',gray_image) #梯度化
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX
cv_show('image',image) #闭操作
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX, iterations=2)
cv_show('image',image)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
image = cv2.medianBlur(image, 9)
cv_show('image',image) #绘制轮廓
thresh, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(type(contours))
print(len(contours)) cur_img = resize_image.copy()
cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
cv_show('img',cur_img) for item in contours:
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
if (weight > (height * 2.5)) and (weight < (height * 4)):
if height > 40 and height < 80:
image = origin_image[int(y*ratio): int((y + height)*ratio), int(x*ratio) : int((x + weight)*ratio)]
cv_show('image',image)
cv2.imwrite('chepai_09.jpg',image)

第三部分:车牌号码分割:

 # 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np # 显示图片
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows() #车牌灰度化
chepai_image = cv2.imread('chepai_09.jpg')
image = cv2.GaussianBlur(chepai_image, (3, 3), 0)
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv_show('gray_image',gray_image) ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
cv_show('image',image) #计算二值图像黑白点的个数,处理绿牌照问题,让车牌号码始终为白色
area_white = 0
area_black = 0
height, width = image.shape
for i in range(height):
for j in range(width):
if image[i, j] == 255:
area_white += 1
else:
area_black += 1
print(area_black,area_white)
if area_white > area_black:
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
cv_show('image',image) #绘制轮廓
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 5))
image = cv2.dilate(image, kernel)
cv_show('image', image)
thresh, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cur_img = chepai_image.copy()
cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
cv_show('img',cur_img)
words = []
word_images = []
print(len(contours))
for item in contours:
word = []
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
word.append(x)
word.append(y)
word.append(weight)
word.append(height)
words.append(word)
words = sorted(words, key=lambda s:s[0], reverse=False)
print(words)
i = 0
for word in words:
if (word[3] > (word[2] * 1)) and (word[3] < (word[2] * 5)):
i = i + 1
splite_image = chepai_image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
word_images.append(splite_image) for i, j in enumerate(word_images):
cv_show('word_images[i]',word_images[i])
cv2.imwrite("./chepai_09/0{}.png".format(i),word_images[i])

第四部分:字符匹配:

 # 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np # 准备模板
template = ['','','','','','','','','','',
'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
'藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
'青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙'] # 显示图片
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表
def read_directory(directory_name):
referImg_list = []
for filename in os.listdir(directory_name):
referImg_list.append(directory_name + "/" + filename)
return referImg_list # 中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():
chinese_words_list = []
for i in range(34,64):
c_word = read_directory('./refer1/'+ template[i])
chinese_words_list.append(c_word)
return chinese_words_list #英文模板列表(只匹配车牌的第二个字符)
def get_english_words_list():
eng_words_list = []
for i in range(10,34):
e_word = read_directory('./refer1/'+ template[i])
eng_words_list.append(e_word)
return eng_words_list # 英文数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
eng_num_words_list = []
for i in range(0,34):
word = read_directory('./refer1/'+ template[i])
eng_num_words_list.append(word)
return eng_num_words_list #模版匹配
def template_matching(words_list):
if words_list == 'chinese_words_list':
template_words_list = chinese_words_list
first_num = 34
elif words_list == 'english_words_list':
template_words_list = english_words_list
first_num = 10
else:
template_words_list = eng_num_words_list
first_num = 0
best_score = []
for template_word in template_words_list:
score = []
for word in template_word:
template_img = cv2.imdecode(np.fromfile(word, dtype=np.uint8), 1)
template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
height, width = template_img.shape
image = image_.copy()
image = cv2.resize(image, (width, height))
result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
score.append(result[0][0])
best_score.append(max(score))
return template[first_num + best_score.index(max(best_score))] referImg_list = read_directory("chepai_13")
chinese_words_list = get_chinese_words_list()
english_words_list = get_english_words_list()
eng_num_words_list = get_eng_num_words_list()
chepai_num = [] #匹配第一个汉字
img = cv2.imread(referImg_list[0])
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
#第一个汉字匹配
chepai_num.append(template_matching('chinese_words_list'))
print(chepai_num[0]) #匹配第二个英文字母
img = cv2.imread(referImg_list[1])
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
#第二个英文字母匹配
chepai_num.append(template_matching('english_words_list'))
print(chepai_num[1]) #匹配其余5个字母,数字
for i in range(2,7):
img = cv2.imread(referImg_list[i])
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
#其余字母匹配
chepai_num.append(template_matching('eng_num_words_list'))
print(chepai_num[i])
print(chepai_num)

基于opencv的车牌提取项目的更多相关文章

  1. 基于opencv的车牌识别系统

    前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述     OpenCV的全称是:Open Source Computer Vision ...

  2. 数字图像处理:基于MATLAB的车牌识别项目 标签: 图像处理matlab算法 2017-06-24 09:17 98人阅读 评论(0)

    学过了数字图像处理,就进行一个综合性强的小项目来巩固一下知识吧.前阵子编写调试了一套基于MATLAB的车牌识别的项目的代码.今天又重新改进了一下代码,识别的效果好一点了,也精简了一些代码.这里没有使用 ...

  3. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

  4. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  5. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  6. 基于Opencv自带BP网络的车标简易识别

    代码地址如下:http://www.demodashi.com/demo/12966.html 记得把这几点描述好咯:代码实现过程 + 项目文件结构截图 + 演示效果 1.准备工作 1.1 训练集和测 ...

  7. 基于OpenCV的火焰检测(二)——RGB颜色判据

    上文跟大家分享了在做火焰检测中常用到的图像预处理方法,从这一篇博文开始,我将向大家介绍如何一步一步地检测出火焰区域.火焰提取要用 到很多判据,今天我要向大家介绍的是最简单的但是很有效的判据--RGB判 ...

  8. 【计算机视觉】基于OpenCV的人脸识别

    一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...

  9. 基于Opencv识别,矫正二维码(C++)

    参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...

随机推荐

  1. 【HIVE】(1)建表、导入数据、外部表、导出数据

    导入数据 1). 本地 load data local inpath "/root/example/hive/data/dept.txt" into table dept; 2). ...

  2. Java中IO软件包的详细介绍

    一.Java Io流 Java Io流的概念 java的io是实现输入和输出的基础,可以方便的实现数据的输入和输出操作.在java中把不同的输入/输出源(键盘,文件,网络连接等)抽象表述为" ...

  3. Java实现币值最大化问题

    1 问题描述 给定一排n个硬币,其面值均为正整数c1,c2,-,cn,这些整数并不一定两两不同.请问如何选择硬币,使得在其原始位置互不相邻的条件下,所选硬币的总金额最大. 2 解决方案 2.1 动态规 ...

  4. Java实现 黑洞数

    任意一个5位数,比如:34256,把它的各位数字打乱,重新排列,可以得到一个最大的数:65432,一个最小的数23456.求这两个数字的差,得:41976,把这个数字再次重复上述过程(如果不足5位,则 ...

  5. 信道估计(channel estimation)图解——从SISO到MIMO原理介绍

    1. 引言 在所有通信中,信号都会通过一个介质(称为信道),并且信号会失真,或者在信号通过信道时会向信号中添加各种噪声.正确解码接收到的信号而没有太多错误的方法是从接收到的信号中消除信道施加的失真和噪 ...

  6. Python内置Turtle绘图库方法简介+多案例

    urtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x.纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的 ...

  7. 除了FastJson,你也应该了解一下Jackson(二)

    概览 上一篇文章介绍了Jackson中的映射器ObjectMapper,以及如何使用它来实现Json与Java对象之间的序列化和反序列化,最后介绍了Jackson中一些序列化/反序列化的高级特性.而本 ...

  8. SpringMVC+Mybatis初尝试

    一个月前简单学完了SpringMVC框架和Mybatis框架,一直没有使用过,今天主要用它做了个简单的学生管理系统,不过第一次用框架,实现的功能简单,比较low. 注:这里使用的数据库是SQLServ ...

  9. @loj - 6039@ 「雅礼集训 2017 Day5」珠宝

    目录 @description@ @solution@ @accpeted code@ @details@ @description@ Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠 ...

  10. Django自定义500的错误显示信息

    这个方法应该对Django version 2.2.4以后的版本都有效,因为我的项目是这个版本,其他版本我并没有测试. 首先找到Django的exception.py文件路径:  C:\python_ ...