LeetCode60. 第k个排列
解法一:用next_permutation()函数,要求第k个排列,就从"123...n"开始调用 k - 1 次 next_permutation()函数即可。
class Solution {
public:
string getPermutation(int n, int k) {
string res;
for(int i = 1; i <= n; ++i) {
res += to_string(i);
}
for(int i = 0; i < k - 1; ++i) {
next_permutation(res.begin(), res.end());
}
return res;
}
};
解法二:
计数,计算第k个排列各个位的数字。
比如 n = 4, k = 10。 假设我们确定了第0位(最高位)的数字,那么剩下三位有三种排列,即剩下(n - 1)! = 3! = 6种排列。
因此如果第 0 位填1,那么当前的排列范围为第1个排列到第6个排列,6 < 10,因此第一个数字不填1。
那么再假设第 0 位填2,这里显然跨过了第 0 位填 1 的6个排列,因此 k - (n - 1)! = 10 - 3 ! = 4,
又由于第 0 位填2的排列也有 3! = 6个,6 > 4,
因此我们可以确定第 10 个排列的第 0 位(第一个数字)填2。然后就是要确定第 1 位(第二个数字),依旧是从小到大枚举:
假设第 1 位填 1,那么剩下没填的位数有两位,剩下的排列数就是 2! = 2, 2 < k (k现在是4)
因此第 1 位 不是填1 ,跳过第 1 位填 1 的所有排列, k 再更新一下:k -= 2! , 现在 k 的值是 2。
那再假设第 1 位填 3 (由于2已经用过了,所以跳过 2),第 0 位 填 2、第 1 位填 3 的排列数为 2, 2 >= k,
所以我们可以确定第 1 位 填3。现在枚举第 2 位(第三个数字)的情况,假设第 2 位填1,剩下只剩一位没填,排列数为 1, 1 < k (k的值是2)
所以跳过第 2 位为 1 的排列,更新k : k -= 1! , k现在为1,
由于2,3都已经用过了,所以跳过,假设第 2 位 填 4: 剩下的排列数为1, 1 >= k,
因此我们得到第 2 位数字为 4.这样第 3 位(第四个数字,即最后一个)只能填 我们还没有填的1.
所以我们知道了当 n 为 4 时,第10个排列的数字为 "2341"
根据上面的思路,得到如下代码:
class Solution {
public:
string getPermutation(int n, int k) {
string res;
vector<bool> used(10); //used记录每个数字是否使用过
for(int i = 0; i < n; ++i) { //枚举每个位置填的数字,确定了 0 ~ n - 1位填的每个数字后就返回结果
int fact = 1; //fact是剩下的位数可以组成的排列数,大小为 (n - i - 1)!
for(int j = 1; j <= n - i - 1; ++j) { //前面已经填了 i + 1位数,剩下的位存在的总排列数就是 (n - (i + 1))!
fact *= j;
}
for(int j = 1; j<= n; ++j) { //从小到大枚举当前位置可以填的数字
if(used[j] == false) { //当前位置只可以填没有用过的数字
if(fact < k) { //如果剩下的排列数小于 k ,说明第k个排列的第 i 个位置的数字不是 j(比 j 大)
k -= fact; //跳过第 i 位为 j 的所有排列,并更新 k
} else {
res += to_string(j); //否则,说明第 k 个排列的第 i 个数字为 j
used[j] = true; //记录数字 j 已经被使用过,后面的位置就不能再填 j 了
break; //已经确定了第 i 位的数字,跳出当前循环,继续判断 i + 1(下一位)的数字
}
}
}
}
return res;
}
};
LeetCode60. 第k个排列的更多相关文章
- [Swift]LeetCode60. 第k个排列 | Permutation Sequence
The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...
- LEETCODE60——第K个排列
class Solution { public: string getPermutation(int n, int k) { '); vector<bool> flag(n, false) ...
- Leetcode60. Permutation Sequence第k个排列
给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 笔记21 生成第k个排列
题目是这样的: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all ...
- LinkCode 第k个排列
http://www.lintcode.com/zh-cn/problem/permutation-sequence/# 原题 给定 n 和 k,求123..n组成的排列中的第 k 个排列. 注意事项 ...
- 力扣算法题—060第K个排列
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode(60): 第k个排列
Medium! 题目描述: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
随机推荐
- Java 第十一届 蓝桥杯 省模拟赛 正整数的摆动序列
正整数的摆动序列 问题描述 如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列.即 a[2i]<a[2i-1], a[2i+1]>a[2i]. 小明想知道,长度为 m ...
- Java实现 LeetCode 575 分糖果(看看是你的长度小还是我的种类少)
575. 分糖果 给定一个偶数长度的数组,其中不同的数字代表着不同种类的糖果,每一个数字代表一个糖果.你需要把这些糖果平均分给一个弟弟和一个妹妹.返回妹妹可以获得的最大糖果的种类数. 示例 1: 输入 ...
- Java实现 蓝桥杯 算法提高 三进制数位和
算法提高 三进制数位和 时间限制:1.0s 内存限制:256.0MB 提交此题 问题描述 给定L和R,你需要对于每一个6位三进制数(允许前导零),计算其每一个数位上的数字和,设其在十进制下为S. 一个 ...
- java实现第七届蓝桥杯阶乘位数
阶乘位数 阶乘位数 9的阶乘等于:362880 它的二进制表示为:1011000100110000000 这个数字共有19位. 请你计算,9999 的阶乘的二进制表示一共有多少位? 注意:需要提交的是 ...
- 阿里云高级技术专家空见: CDN的数据化之路
想要实现优质高速的互联网视频服务,一定离不开高质量的内容分发网络服务,就是我们常说的CDN,在10月13日云栖大会视频多媒体分论坛上,阿里云高级技术专家空见为大家讲解了CDN服务过程中,数据处理.安全 ...
- (三)Host头攻击
01 漏洞描述 为了方便获取网站域名,开发人员一般依赖于请求包中的Host首部字段.例如,在php里用_SERVER["HTTP_HOST"].但是这个Host字段值是不可信赖的( ...
- 面试官:换人!他连 TCP 这几个参数都不懂
每日一句英语学习,每天进步一点点: 前言 TCP 性能的提升不仅考察 TCP 的理论知识,还考察了对于操心系统提供的内核参数的理解与应用. TCP 协议是由操作系统实现,所以操作系统提供了不少调节 T ...
- javaScript的执行机制-同步任务-异步任务-微任务-宏任务
一.概念理解 1.关于javascript javascript是一门单线程语言,在最新的HTML5中提出了Web-Worker,但javascript是单线程这一核心仍未改变.所以一切javascr ...
- mysql域名解析引起的远程访问过慢?
MYSQL远程连接速度慢的解决方法 PHP远程连接MYSQL速度慢,有时远程连接到MYSQL用时4-20秒不等,本地连接MYSQL正常,出现这种问题的主要原因是, 默认安装的MYSQL开启了DNS的反 ...
- 附022.Kubernetes_v1.18.3高可用部署架构一
kubeadm介绍 kubeadm概述 参考附003.Kubeadm部署Kubernetes. kubeadm功能 参考附003.Kubeadm部署Kubernetes. 本方案描述 本方案采用kub ...