Accuracy/Error rate

ACC = (TP+TN)/(P+N)

ERR = (FP+FN)/(P+N) = 1-ACC

Confusion matrix

Precision/Recall/F1

Precision = TP/(TP+FP)-- positive predictive value

Recall= TP/(TP+FN)  -- true positive rate

F1=1/(1/precision+1/recall)

ROC

True positive rate (TPR): the ratio of positive instances that are correctly classified as positive

TPR = TP/(TP+FN) = recall

True negative rate (TNR): the ratio of negative instances that are correctly classified as negative

TNR = TN/(TN+FP) = specify

False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive.

FPR = FN/(TN+FP) = 1-specify

ROC: TPR vs FPR

Matthews correlation coefficient

Logarithm loss/cross entropy

Evaluation metrics for classification的更多相关文章

  1. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  2. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  3. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  4. 2013:Audio Tag Classification - MIREX Wiki

    Contents [hide] 1 Description 1.1 Task specific mailing list 2 Data 2.1 MajorMiner Tag Dataset 2.2 M ...

  5. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  6. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

  7. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  8. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  9. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-refresh

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  2. c++程序—while猜数字游戏

    #include<iostream> using namespace std; #include<string> #include<ctime> int main( ...

  3. P1031 查验身份证

    转跳点:

  4. VS Code使用.vue的v-for方法提示错误的解决办法

    1.在使用v-for的时候在后面跟上:key="key" <div v-for="(value, key) in [1,2,3]" :key=" ...

  5. Mybatis报错——Mapped Statements collection already contains value for

    解决办法: 看看你的mybatis-config.xml <mappers>     <mapper resource="mapper/SeckillDao.xml&quo ...

  6. C3P0模板

    1.创建c3p0-config.xml配置文件放在src下 <?xml version="1.0" encoding="UTF-8"?> <c ...

  7. C# Socket编程入门

    一直没有触及到这一块儿,学习下 在看一个小demo   https://www.cnblogs.com/yy3b2007com/p/7476458.html

  8. tf.summary可视化参数

    1.tf.summary.scalar('accuracy', accuracy) 损失值.准确率随着迭代次数的进行,其指标变化情况:一般在画loss,accuary时会用到这个函数. 2.tenso ...

  9. psp --2

    PSP0 ---2 项目计划日志 姓名:赵腾                                                日期:9/12/2017 任务 日期 听课 编写程序 阅读课 ...

  10. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...