Accuracy/Error rate

ACC = (TP+TN)/(P+N)

ERR = (FP+FN)/(P+N) = 1-ACC

Confusion matrix

Precision/Recall/F1

Precision = TP/(TP+FP)-- positive predictive value

Recall= TP/(TP+FN)  -- true positive rate

F1=1/(1/precision+1/recall)

ROC

True positive rate (TPR): the ratio of positive instances that are correctly classified as positive

TPR = TP/(TP+FN) = recall

True negative rate (TNR): the ratio of negative instances that are correctly classified as negative

TNR = TN/(TN+FP) = specify

False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive.

FPR = FN/(TN+FP) = 1-specify

ROC: TPR vs FPR

Matthews correlation coefficient

Logarithm loss/cross entropy

Evaluation metrics for classification的更多相关文章

  1. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  2. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  3. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  4. 2013:Audio Tag Classification - MIREX Wiki

    Contents [hide] 1 Description 1.1 Task specific mailing list 2 Data 2.1 MajorMiner Tag Dataset 2.2 M ...

  5. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  6. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

  7. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  8. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  9. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

随机推荐

  1. winfrom窗体的透明度

    在VS中创建一个Winform项目,其默认的窗体名称为 Form1. 在VS设计界面中对 Form1 的 Opacity 属性值设置为 50%. 没错,就这样就可以了. 方法2:            ...

  2. 逆向-PE导入表

    导入表 动态链接库需要导入表 结构 typedef struct _IMAGE_IMPORT_DESCRIPTOR { union { DWORD Characteristics; // 0 for ...

  3. IO_课堂测试

    IO_课堂测试 一,用户需求 英语的26 个字母的频率在一本小说中是如何分布的?某类型文章中常出现的单词是什么?某作家最常用的词汇是什么?<飘> 中最常用的短语是什么,等等. (1)要求1 ...

  4. 使用FragmentStatePagerAdapter时发现的内存泄露问题

    这篇文章想说的并非是由于使用 FragmentStatePagerAdapter 而导致的内存泄漏,内存泄漏的真正原因和 FragmentStaePagerAdapter 并无直接关联,但是使用 Fr ...

  5. zabbix监控linux 以及监控mysql

    Zabbix监控Linux主机设置方法 linux客户端 :59.128 安装了mysql 配置zabbix的yum源 rpm -ivh http://repo.zabbix.com/zabbix/2 ...

  6. PWC6199:Generated servlet error:Only a type can be imported. org.apache.jasper.tagplugins.jstl.core.ForEach resolves to a package

    <%@ import="org.apache.jasper.tagplugins.jstl.core.ForEach"%> 去掉这条语句,就不报错了.所以问题就出在这里 ...

  7. iOS 保存图片(视频)到相册

    1.C语言函数方式实现 注意:UIImageWriteToSavedPhotosAlbum方法必须实现代理方法,否则会崩溃. //参数1:图片对象 //参数2:成功方法绑定的target //参数3: ...

  8. 实验吧-密码学-js(Chrome用console.log调试js)

    题目就是js,可能就是一个js的代码,查看源码并复制,在Chrome中打开网页,审查元素. 将复制的代码输入,将eval改成console.log,再回车执行,就得到一段js代码. 代码中有Unico ...

  9. POJ1200 A - Crazy Search(哈希)

    A - Crazy Search Many people like to solve hard puzzles some of which may lead them to madness. One ...

  10. 常用函数式接口与Stream API简单讲解

    常用函数式接口与Stream API简单讲解 Stream简直不要太好使啊!!! 常用函数式接口 Supplier<T>,主要方法:T get(),这是一个生产者,可以提供一个T对象. C ...