给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素。

说明:

你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数。

示例 1:

输入: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
输出: 1
示例 2:

输入: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
输出: 3

进阶:

如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k 小的值,你将如何优化 kthSmallest 函数?

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/kth-smallest-element-in-a-bst

为了解决这个问题,可以使用 BST 的特性:BST 的中序遍历是升序序列。

方法一:递归

算法:

通过构造 BST 的中序遍历序列,则第 k-1 个元素就是第 k 小的元素。

Python

class Solution:
def kthSmallest(self, root, k):
def inorder(r):
return inorder(r.left) + [r.val] + inorder(r.right) if r else [] return inorder(root)[k - 1]

java

class Solution {
public ArrayList<Integer> inorder(TreeNode root, ArrayList<Integer> arr) {
if (root == null) return arr;
inorder(root.left, arr);
arr.add(root.val);
inorder(root.right, arr);
return arr;
} public int kthSmallest(TreeNode root, int k) {
ArrayList<Integer> nums = inorder(root, new ArrayList<Integer>());
return nums.get(k - 1);
}
}

复杂度分析

时间复杂度:O(N),遍历了整个树。

空间复杂度:O(N),用了一个数组存储中序序列。

方法二:迭代

算法:

在栈的帮助下,可以将方法一的递归转换为迭代,这样可以加快速度,因为这样可以不用遍历整个树,可以在找到答案后停止。

Python

class Solution:
def kthSmallest(self, root, k):
stack = [] while True:
while root:
stack.append(root)
root = root.left
root = stack.pop()
k -= 1
if not k:
return root.val
root = root.right

java

class Solution {
public int kthSmallest(TreeNode root, int k) {
LinkedList<TreeNode> stack = new LinkedList<TreeNode>(); while (true) {
while (root != null) {
stack.add(root);
root = root.left;
}
root = stack.removeLast();
if (--k == 0) return root.val;
root = root.right;
}
}
}

复杂度分析

时间复杂度:O(H+k),其中 HH 指的是树的高度,由于我们开始遍历之前,要先向下达到叶,当树是一个平衡树时:复杂度为 O(logN+k)。当树是一个不平衡树时:复杂度为 O(N+k),此时所有的节点都在左子树。

空间复杂度:O(H+k)。当树是一个平衡树时:O(logN+k)。当树是一个非平衡树时:O(N+k)。

LeetCode 中关于 BST 的题有 [Validate Binary Search Tree], [Recover Binary Search Tree], [Binary Search Tree Iterator], [Unique Binary Search Trees], [Unique Binary Search Trees II],[Convert Sorted Array to Binary Search Tree] 和 [Convert Sorted List to Binary Search Tree]。那么这道题给的提示是让我们用 BST 的性质来解题,最重要的性质是就是左<根<右,如果用中序遍历所有的节点就会得到一个有序数组。所以解题的关键还是中序遍历啊。先来看一种非递归的方法,中序遍历最先遍历到的是最小的结点,只要用一个计数器,每遍历一个结点,计数器自增1,当计数器到达k时,返回当前结点值即可,参见代码如下:

解法一:

class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int cnt = 0;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
++cnt;
if (cnt == k) return p->val;
p = p->right;
}
return 0;
}
};

当然,此题我们也可以用递归来解,还是利用中序遍历来解,代码如下:

解法二:

class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
return kthSmallestDFS(root, k);
}
int kthSmallestDFS(TreeNode* root, int &k) {
if (!root) return -1;
int val = kthSmallestDFS(root->left, k);
if (k == 0) return val;
if (--k == 0) return root->val;
return kthSmallestDFS(root->right, k);
}
};

再来看一种分治法的思路,由于 BST 的性质,可以快速定位出第k小的元素是在左子树还是右子树,首先计算出左子树的结点个数总和 cnt,如果k小于等于左子树结点总和 cnt,说明第k小的元素在左子树中,直接对左子结点调用递归即可。如果k大于 cnt+1,说明目标值在右子树中,对右子结点调用递归函数,注意此时的k应为 k-cnt-1,应为已经减少了 cnt+1 个结点。如果k正好等于 cnt+1,说明当前结点即为所求,返回当前结点值即可,参见代码如下:

解法三:

class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int cnt = count(root->left);
if (k <= cnt) {
return kthSmallest(root->left, k);
} else if (k > cnt + 1) {
return kthSmallest(root->right, k - cnt - 1);
}
return root->val;
}
int count(TreeNode* node) {
if (!node) return 0;
return 1 + count(node->left) + count(node->right);
}
};

这道题的 Follow up 中说假设该 BST 被修改的很频繁,而且查找第k小元素的操作也很频繁,问我们如何优化。其实最好的方法还是像上面的解法那样利用分治法来快速定位目标所在的位置,但是每个递归都遍历左子树所有结点来计算个数的操作并不高效,所以应该修改原树结点的结构,使其保存包括当前结点和其左右子树所有结点的个数,这样就可以快速得到任何左子树结点总数来快速定位目标值了。定义了新结点结构体,然后就要生成新树,还是用递归的方法生成新树,注意生成的结点的 count 值要累加其左右子结点的 count 值。然后在求第k小元素的函数中,先生成新的树,然后调用递归函数。在递归函数中,不能直接访问左子结点的 count 值,因为左子节结点不一定存在,所以要先判断,如果左子结点存在的话,那么跟上面解法的操作相同。如果不存在的话,当此时k为1的时候,直接返回当前结点值,否则就对右子结点调用递归函数,k自减1,参见代码如下:

解法四:

// Follow up
class Solution {
public:
struct MyTreeNode {
int val;
int count;
MyTreeNode *left;
MyTreeNode *right;
MyTreeNode(int x) : val(x), count(1), left(NULL), right(NULL) {}
}; MyTreeNode* build(TreeNode* root) {
if (!root) return NULL;
MyTreeNode *node = new MyTreeNode(root->val);
node->left = build(root->left);
node->right = build(root->right);
if (node->left) node->count += node->left->count;
if (node->right) node->count += node->right->count;
return node;
} int kthSmallest(TreeNode* root, int k) {
MyTreeNode *node = build(root);
return helper(node, k);
} int helper(MyTreeNode* node, int k) {
if (node->left) {
int cnt = node->left->count;
if (k <= cnt) {
return helper(node->left, k);
} else if (k > cnt + 1) {
return helper(node->right, k - 1 - cnt);
}
return node->val;
} else {
if (k == 1) return node->val;
return helper(node->right, k - 1);
}
}
};

LeetCode——230. 二叉搜索树中第K小的元素的更多相关文章

  1. LeetCode 230. 二叉搜索树中第K小的元素(Kth Smallest Element in a BST)

    230. 二叉搜索树中第K小的元素 230. Kth Smallest Element in a BST 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的 ...

  2. Java实现 LeetCode 230 二叉搜索树中第K小的元素

    230. 二叉搜索树中第K小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明: 你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. ...

  3. [LeetCode]230. 二叉搜索树中第K小的元素(BST)(中序遍历)、530. 二叉搜索树的最小绝对差(BST)(中序遍历)

    题目230. 二叉搜索树中第K小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 题解 中序遍历BST,得到有序序列,返回有序序列的k-1号元素. 代 ...

  4. leetcode 230 二叉搜索树中第K小的元素

    方法1:统计每个节点的子节点数目,当k>左子树节点数目时向左子树搜索,k=左子树节点数目时返回根节点,否则向右子树搜索. 方法2:递归中序遍历,这里开了O(n)空间的数组. class Solu ...

  5. LeetCode 230. 二叉搜索树中第K小的元素(Kth Smallest Element in a BST)

    题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 示例 1: 输入: roo ...

  6. leetcode 230. 二叉搜索树中第K小的元素(C++)

    给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 示例 1: 输入: root = [ ...

  7. leetcode 230二叉搜索树中第k小的元素

    通过stack进行中序遍历迭代,timeO(k),spaceO(1) /** * Definition for a binary tree node. * struct TreeNode { * in ...

  8. Leetcode:230. 二叉搜索树中第K小的元素

    Leetcode:230. 二叉搜索树中第K小的元素 Leetcode:230. 二叉搜索树中第K小的元素 思路: 利用BST的中序历遍的结果为其排序后的结果,我们可以利用其特性直接找到第k个中序遍历 ...

  9. 刷题-力扣-230. 二叉搜索树中第K小的元素

    230. 二叉搜索树中第K小的元素 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kth-smallest-element-in-a ...

随机推荐

  1. 127个常用的JS代码片段,每段代码花30秒就能看懂(上)

    127个常用的JS代码片段,每段代码花30秒就能看懂(上) JavaScript 是目前最流行的编程语言之一,正如大多数人所说:“如果你想学一门编程语言,请学JavaScript.” FreeCode ...

  2. git 在企业里的基本操作

    拖下来码云上的代码: git add . 若把单个文件加入到暂存区,则用git add 某文件 若把所有文件加入到暂存区,则使用git add . git commit -m"提交" ...

  3. POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算

    求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...

  4. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-indent-right

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  5. mysql视图使用方法

    1.为什么要使用视图 对于复杂的查询,往往是有多个数据表进行关联查询而得到,而这种语句往往比较复杂,也可能非常频繁的使用.比如: select 字段一,字段二.字段三, from 数据表1 join ...

  6. vagrant 学习笔记

    之所以学习他是因为最近换了电脑 又要重新搭环境  很烦躁然后就有了然后 1.先安装 virtualbox2.安装 vagrant3.安装xshell4.重启5.下载系统镜像 (可以去vagrant官网 ...

  7. 自定义环形进度条RoundProgressBar

    一.效果图: Canvas画圆环说明: 圆环宽度不必在意,只是画笔宽度设置后达到的效果. 二.实现步骤 1.自定义View-RoundProgressBar 2.设置属性resources(decle ...

  8. 十五、CI框架之自动加载数据库

    一.在config的autoload.php文件中,如果写入以下代码,那么在控制器中无需再次加载数据库了,相当于全局自动加载数据库了 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码 ...

  9. Oracle 中多个字段显示成一列

    SELECT COALESCE(A,B,C,'NA') FROM XXXXX --判断A若为空则取B,B为空这取C,C为空则取默认值'NA'

  10. (6)Mat对象的一些函数和方法的使用

    首先是基本的代码整理 #include<iostream> #include<opencv.hpp> using namespace std; using namespace ...