题解 P4296 【[AHOI2007]密码箱】
由题意有
\(x^2\equiv 1\;mod\;n\)
对题目的公式进行变形
\(x^2-1=k\times n\)
\((x+1)(x-1)=k\times n\)
由唯一分解定理,我们构造\(a,b,\)使
\(a|(x+1),b|(x-1)\)
或
\(a|(x-1),b|(x+1)\)
然后我们枚举\(a,b,\)找出所有满足条件的\(x\)
我们可以保证所有的\(x\)都被枚举。刘汝佳:有兴趣的读者可以自行查阅相关资料
\(p.s.:\) 枚举时的小技巧,令\(a\le b\),则枚举\(a\),枚举所有满足条件的\(kb+1\;or\;kb-1,\;a\)只用枚举到\(\sqrt n\)
记得开\(long\;long\)请忽略我的#define int long long
\(Code\)
#pragma GCC optimize(2)
#include <cstdio>
#include <iostream>
#include <set>
#include <cmath>
#define int long long
using namespace std;
set<int> st;//set去重
signed main()
{
int n,sn,b;
cin>>n;
sn=sqrt(n);
if(n==1)
{
puts("None");
return 0;
}
st.insert(1);
for(int i=1;i<=sn;i++)
{
if(n%i==0)
{
b=n/i;
for(int j=b+1;j<=n;j+=b)
if((j+1)%i==0) st.insert(j);
for(int j=b-1;j<=n;j+=b)
if((j-1)%i==0) st.insert(j);
}
}
if(!st.size()) puts("None");
for(set<int>::iterator it=st.begin();it!=st.end();it++)
printf("%d\n",*it);
return 0;
}
题解 P4296 【[AHOI2007]密码箱】的更多相关文章
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- 1406: [AHOI2007]密码箱
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1591 Solved: 944[Submit][Status][ ...
- BZOJ_1406_[AHOI2007]密码箱_枚举+数学
BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- 【bzoj1406】 AHOI2007密码箱 数论
在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数 ...
- 【BZOJ】1406: [AHOI2007]密码箱
http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且 ...
- BZOJ1406 [AHOI2007]密码箱 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1406 题意概括 求所有数x,满足 x<n 且 x2≡1 (mod n). n<=2 ...
随机推荐
- MySQL笔记总结-DDL语言
DDL语言 数据类型 一.数值型 1.整型 tinyint.smallint.mediumint.int/integer.bigint 1 2 3 4 8 特点: ①都可以设置无符号和有符号,默认有符 ...
- 使用dynamic和MEF实现轻量级的AOP组件 (2)
转摘 https://www.cnblogs.com/niceWk/archive/2010/07/21/1782092.html 偷梁换柱 上一篇我们初试了DynamicAspect这把小刀,如果你 ...
- 2019-2020-1 20199308《Linux内核原理与分析》第七周作业
<Linux内核分析> 第六章 进程的描述和进程的创建 6.1 进程的描述 操作系统内核实现操作系统的三大管理功能: 进程管理(进程)-核心 内存管理(虚拟内存) 文件系统(文件) 为了管 ...
- 2019-2020-1 20199328《Linux内核原理与分析》第六周作业
使用gdb跟踪分析一个系统调用内核函数 首先我们删除本身的menu目录,并从github上克隆一个menu,并进行编译 编译过程 现在找到test.c文件,加入上个实验中做的getPid()方法 利用 ...
- [Qt] 去掉QMessageBox标题栏上的图标
msgBox.setWindowFlags(Qt::Drawer);
- Elasticsearch系列---实现分布式锁
概要 Elasticsearch在文档更新时默认使用的是乐观锁方案,而Elasticsearch利用文档的一些create限制条件,也能达到悲观锁的效果,我们一起来看一看. 乐观锁与悲观锁 乐观锁 E ...
- windows下怎么同时使用python2和3
windows命令行下,怎么能够自由的切换python2和3呢?当然不是切换目录!很多帖子告诉你,将python2目录下的python.exe文件改成python2.exe,pyhton3目录下的py ...
- js 之 object
js之object 对象 ECMA-262 把对象(object)定义为“属性的无序集合,每个属性存放一个原始值.对象或函数”.严格来说,这意味着对象是无特定顺序的值的数组. 尽管 ECMAScrip ...
- Javascript中的string类型使用UTF-16编码
2019独角兽企业重金招聘Python工程师标准>>> 在JavaScript中,所有的string类型(或者被称为DOMString)都是使用UTF-16编码的. MDN DOMS ...
- MyBaties一级缓存
2019独角兽企业重金招聘Python工程师标准>>> 一.一级缓存简介 在系统代码的运行中,我们可能会在一个数据库会话中,执行多次查询条件完全相同的Sql,鉴于日常应用的大部分场景 ...