Raising Modulo Numbers
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5532   Accepted: 3210

Description

People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment
was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow: 



Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players
including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers. 



You should write a program that calculates the result and is able to find out who won the game. 


Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be
divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13

题意就是求(A1B1+A2B2+ ... +AHBH)mod M.

原来求一个数A的B次幂都是一级一级循环,时间复杂度是O(n),且最后取余M的话很容易溢出。

快速幂:比方说求2的9次幂,它的思想是求2的4次幂*2的4次幂*2,这样2的4次幂只需求一次。2的4次幂怎么求,还是和原来一样,是2的2次幂*2的2次幂,2的2次幂等于2*2;

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; long long getresult(long long m,long long n,long long k)
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m) % k;
n = n >> 1;
m = (m*m) % k;
}
return b;
}
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout); long long Test,i,n,k,temp1,temp2,result;
cin>>Test; while(Test--)
{
result = 0; cin >> k >> n;
for (i = 1; i <= n; i++)
{
cin >> temp1 >> temp2;
result += getresult(temp1, temp2, k);
result = result%k;
}
cout << (result%k) << endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1995:Raising Modulo Numbers 快速幂的更多相关文章

  1. POJ 1995 Raising Modulo Numbers (快速幂)

    题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL ...

  2. poj 1995 Raising Modulo Numbers【快速幂】

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5477   Accepted: ...

  3. POJ1995 Raising Modulo Numbers(快速幂)

    POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...

  4. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  7. POJ 1995 Raising Modulo Numbers

    快速幂取模 #include<cstdio> int mod_exp(int a, int b, int c) { int res, t; res = % c; t = a % c; wh ...

  8. ZOJ2150 Raising Modulo Numbers 快速幂

    ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> # ...

  9. POJ1995:Raising Modulo Numbers(快速幂取余)

    题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...

随机推荐

  1. linux中df和du查看磁盘大小不一致解决方法

    挂了一块50G到/data目录下#  df -h Filesystem Size Used Avail Use% Mounted on /dev/xvdb1 50G 46G 1.2G 98% /dat ...

  2. STM32+Nokia5110LCD

    Nokia5110LCD(84*48) lcd.h #ifndef _LCD_H#define _LCD_H #include "sys.h" #include "std ...

  3. 赶在EW2020之前,FreeRTOS发布V10.3.0,将推出首个LTS版本

    点击下载:FreeRTOSv10.3.0.exe 说明: 1.新版更新: (1)对于IAR For RISC-V进行支持,并且加强了对RISC-V内核芯片支持,做了多处修正. (2)对阿里平头哥CH2 ...

  4. 微信小程序—添加背景音乐

    问题:  想在打开小程序时就自动播放背景音乐(循环) 解决方法: 1.思路:写一个函数,在 onLoad()中调用 2. //index.js //获取应用实例 const back = wx.get ...

  5. JAVA字符串比较问题

    在java中值类型通过==来进行比较值是否相等 而字符串作为一种引用类型,通过==是用来比较其内存位置的,使用equals才是用来比较其值是否相等 使用equals时养成将字符串放在前面的好习惯 字符 ...

  6. 吴裕雄--天生自然java开发常用类库学习笔记:IdentityHashMap类

    import java.util.IdentityHashMap ; import java.util.HashMap ; import java.util.Set ; import java.uti ...

  7. SDRAM调试总结

    SDRAM的调试总结 1 说明 实验平台: JZ2440 CPU: S3C2440 SDRAM型号: EM63A165TS-6G   2 SDRAM的一些基本概念 2.1 引脚分配   2.2 引脚描 ...

  8. Golang的进制转换实战案例

    Golang的进制转换实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.常用进制概述 1>.进制概述 进制也就是进位制,是人们规定的一种进位方法.举个例子:二进制就 ...

  9. JS - 查找字符串中的某个值,截取其之前。和之后的值

    var str = "11:222"; /* *   截取 “ :”之前和之后的值 */document.write(str.split(':')[0])    //输出11doc ...

  10. Python练习题3

    1.九九乘法表 li = [1,2,3,4,5,6,7,8,9] for i in li: for j in li: if i >= j: print(i,'*',j,'=',i*j,end=& ...