主要有三部分组成,threadpool,scheduler,task。

三者关系如上图示,pplx只着重实现了task部分功能,scheduler跟threadpool只是简略实现。

threadpool主要依赖boost.asio达到跨平台的目标,cpprestsdk的 io操作同时也依赖这个threadpool。

pplx提供了两个版本的scheduler,分别是

linux_scheduler依赖boost.asio.threadpool。

window_schedule依赖win32 ThreadPool。

默认的scheduler只是简单地将work投递到threadpool进行分派。

用户可以根据自己需要,实现scheduler_interface,提供复杂的调度。

每个task关联着一个_Task_impl实现体,一个_TaskCollection_t(唤醒事件,后继任务队列,这个队列的任务之间的关系是并列的),还有一个_PPLTaskHandle代码执行单元。

task,并行执行的单位任务。通过scheduler将代码执行单元调度到线程去执行。

task提供类似activeobject模式的功能,可以看作是一个future,通过get()同步阻塞等待执行结果。

task提供拓扑模型,通过then()创建后续task,并作为后继执行任务。注意的是每个task可以接受不限数量的then(),这些后继任务之间并不串行。例 task().then().then()串行,(task1.then(), task1.then())并行。一个任务在执行完成时,会将结果传递给它的所有直接后继执行任务。

此外,task拓扑除了then()函数外,还可以在执行lambda中添加并行分支,然后可以在后继任务中同步这些分支。

也就是说后继任务同步原本task拓扑外的task拓扑才能继续执行。

 1 auto fork0 =
2 task([]()->task<void>{
3 auto fork1 =
4 task([]()->task<void>{
5 auto fork2 =
6 task([](){
7 // do your fork2 work
8
9 });
10 // do your fork1 work
11
12 return fork2;
13 }).then([](task<void>& frk2){ frk2.wait(); }); // will sync fork2
14 // do your fork0 work
15
16 return fork1;
17 }).then([](task<void>& frk1){ frk1.wait(); }); // will sync fork1
18 fork0.wait(); // sync fork1, fork2

上面的方式有一个问题,如果里层的fork先完成,将不要阻塞线程,但是外层fork先完成就不得不阻塞线程等待内层fork完成。

所以可以用when_all

task<task<void> >([]()->task<void> {
std::vector<task<void> > forks;
forks.push_back( task([]() { /* do fork0 work */ }) );
forks.push_back( task([]() { /* do fork1 work */ }) );
forks.push_back( task([]() { /* do fork2 work */ }) );
forks.push_back( task([]() { /* do fork3 work */ }) );
return when_all(std::begin(forks), std::end(forks));
}).then([](task<void> forks){
forks.wait();
}).wait();

通过上面的方式,也可以在lambda中,将其它task拓扑插入到你原来的task拓扑。

task结束,分两种情况,完成以及取消。取消执行,只能在执行代码时通过抛出异常,task并没有提供取消的接口。任务在执行过程中抛出的异常,就会被task捕捉,并暂存异常,然后取消执行。异常在wait()时重新抛出。下面的时序分析可以看到全过程 。

值得注意的是,PPL中task原本的设计是的有Async与Inline之分的。在_Task_impl_base::_Wait()有一小段注释说明

// If this task was created from a Windows Runtime async operation, do not attempt to inline it. The
// async operation will take place on a thread in the appropriate apartment Simply wait for the completed
// event to be set.

也就是task除了由scheduler调度到线程池分派执行,还可以强制在wait()函数内分派执行,后继task也不必再次调度而可以在当前线程继续分派执行。但是pplx没有实现

class _TaskCollectionImpl
{
...
void _Cancel()
{
// No cancellation support
} void _RunAndWait()
{
// No inlining support yet
_Wait();
}

下面是对task的时序分析。

开始的task创建_InitialTaskHandle, 一种只能用于始首的Handle执行单元。

通过then()添加的task,创建_ContinuationTaskHandle,(一种可以入链的后继执行单元),并暂存起来。

当一个任务在线程池中分派结束时,就会将所有通过then()添加到它结尾的后继任务一次过向scheduler调度出去。

任务只能通过抛出异常从而自己中止执行,task并暂存异常(及错误信息)。

后继任务被调度到线程池继续分派执行。

这里顺便讨论一个开销,在window版本中,每个task都有一个唤醒事件,使用事件内核对象,都要创建释放一个内核对象,在高并行任务时,可能会消耗过多内核对象,消耗句柄数。

并且continuation后继任务,在默认scheduler调度下,不会在同一线程中分派,所有后继任务都会简单投递到线程池。由线程池去决定分派的线程。所以由then()串行起来的任务可能会由不同的线程顺序分派,从而产生开销。因为pplx并没有实现 Inline功能,所有task都会视作Async重新调度到线程池。

浅析pplx库的设计与实现。的更多相关文章

  1. 【STM32H7教程】第12章 STM32H7的HAL库框架设计学习

    完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第12章       STM32H7的HAL库框架设计学 ...

  2. 浅析DDD——领域驱动设计的理解

    浅析DDD--领域驱动设计的理解 我觉得领域驱动设计概念的提出,是为了更清晰的区分边界.这里的边界包括业务边界和功能的边界,每个边界都包含具体的领域对象,当业务和功能的领域对象一一对应上之后,业务的变 ...

  3. MySQL库表设计小技巧

    前言: 在我们项目开发中,数据库及表的设计可以说是非常重要,我遇到过很多库表设计比较杂乱的项目,像表名.字段名命名混乱.字段类型设计混乱等等,此类数据库后续极难维护与拓展.我一直相信只有优秀的库表设计 ...

  4. 多平台下Modbus通信协议库的设计(一)

    1.背景 1.1.范围 MODBUS 是 OSI 模型第 7 层上的应用层报文传输协议, 它在连接至不同类型总线或网络的设备之间提供客户机/服务器通信. 自从 1979 年出现工业串行链路的事实标准以 ...

  5. 浅析 jQuery 内部架构设计

    jQuery 对于大家而言并不陌生,因此关于它是什么以及它的作用,在这里我就不多言了,而本篇文章的目的是想通过对源码简单的分析来讨论 jQuery 的内部架构设计,以及 jQuery 是如何利用Jav ...

  6. Mysql配置优化,库表设计

    Mysql 服务器参数类型: 基于参数的作用域: 全局参数:set global autocommit = ON/OFF; 会话参数(会话参数不单独设置则会采用全局参数):set session au ...

  7. 浅析Python解释器的设计

    从现代编译器的角度看,解释器和编译器的边界已经相当的模糊.我们后面的讨论说到的编译器就是Python的解释器,没有特别说明的指的是CPython的实现. 内存管理(Memory Management) ...

  8. 浅析GDAL库C#版本支持中文路径问题(续)

    上篇博客中主要说了GDAL库C#版本中存在的问题,其表现形式主要是:"文件名中的汉字个数是偶数,完全没有影响,读取和创建都正常,如果文件名中的汉字个数是奇数,读取和创建都会报错." ...

  9. 浅析GDAL库C#版本支持中文路径问题

    GDAL库对于C#的支持问题还是蛮多的,对于中文路径的支持就是其中之一(另一个就是通过OGR库获取图形的坐标信息). 关于C#支持中文路径,看过我之前博客的应该都不陌生,如果使用的是我修改过的GDAL ...

随机推荐

  1. PowerDesigner使用教程(二)

    在PowerDesigner使用教程(一)中已经介绍了基本用法,下面介绍一些使用技巧. 1.  生成sql脚本 Database→Generate Database 选择要输出的文件路径,即文件存储路 ...

  2. [JavaWeb基础] 031.dom4j写入xml的方法

    上一篇我们讲述了dom4j读取xml的4种方法,甚是精彩,那么怎么样写入xml呢?我们直接看下源码实现. public static void main(String[] args) throws E ...

  3. Java中的集合(七)双列集合顶层接口------Map接口架构

    Java中的集合(七)双列集合顶层接口------Map接口 一.Map接口的简介 通过List接口,我们知道List接口下的集合是单列集合,数据存储是单列的结构.Map接口下是一个键值对(key-v ...

  4. super调用父类的属性方法

    super:可以用来修饰属性  方法   构造器 当子类与父类中有同名的属性时,可以通过   super.此属性  显式的调用父类声明的属性 若想调用子类的同名的属性“this.此属性” 2.当子类重 ...

  5. 50个SQL语句(MySQL版) 问题十三

    --------------------------表结构-------------------------- student(StuId,StuName,StuAge,StuSex) 学生表 tea ...

  6. 移动端border:1px问题解决方案

    了解设备像素和css像素的因该知道,通常我们在写移动端时,是按照设计稿标注的像素除以设备的DPR来写真实的像素, 比如在iPhone6上,我们写的20px字体世界上在视觉效应上有20px; 所以当我们 ...

  7. Java实现 LeetCode 791 自定义字符串排序(桶排序)

    791. 自定义字符串排序 字符串S和 T 只包含小写字符.在S中,所有字符只会出现一次. S 已经根据某种规则进行了排序.我们要根据S中的字符顺序对T进行排序.更具体地说,如果S中x在y之前出现,那 ...

  8. (Java实现) 洛谷 P1025 数的划分

    题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1. 问有多少种不同的分法. 输 ...

  9. Java实现派(Pie, NWERC 2006, LA 3635)

    题目 有F+1个人来分N个圆形派,每个人得到的必须是一整块派,而不是几块拼在一起,且面积要相同.求每个人最多能得到多大面积的派(不必是圆形). 输入的第一行为数据组数T.每组数据的第一行为两个整数N和 ...

  10. Java实现 LeetCode 208 实现 Trie (前缀树)

    208. 实现 Trie (前缀树) 实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie() ...