python图像处理常用方法
在线标注网站
https://gitlab.com/vgg/via
http://www.robots.ox.ac.uk/~vgg/software/via/via.html
数组与图像互转
from matplotlib import image
image.imsave('/xxx/%d.jpg'%d, array, cmap='gray') #数组转灰度图,jpg为三个通道数值一样
arr = image.imread("")
灰度图增强对比度
from PIL import Image
from PIL import ImageEnhance
img = Image.open('/xxx/xx.jpg')
img.show()
enh_con = ImageEnhance.Contrast(img)
contrast = 1.5 #增强的倍数
img_contrasted = enh_con.enhance(contrast)
img_contrasted.show()
处理标注网站的csv文件
import csv
import json
import numpy as np
def readcsv(filename):
list1 = []
with open(filename)as f:
csv_reader = csv.reader(f)
for row in csv_reader:
x,y,w,h = readjson(row[5])
list1.append([row[0], x, y, w, h])
arr = np.array(list1)
return arr
def readjson(jsonstr):
jsontemp = json.loads(jsonstr)
x,y,w,h = jsontemp["x"], jsontemp["y"], jsontemp["width"], jsontemp["height"]
return x,y,w,h
if __name__ == '__main__':
arr = readcsv('./ann/ann_test.csv')
print(arr)
图像resize,等比缩放,旁边加黑边:
import cv2
import numpy as np
from glob import glob
import os
def training_transform(height, width, output_height, output_width):
# https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html
height_scale, width_scale = output_height / height, output_width / width
scale = min(height_scale, width_scale)
resize_height, resize_width = round(height * scale), round(width * scale)
pad_top = (output_height - resize_height) // 2
pad_left = (output_width - resize_width) // 2
A = np.float32([[scale, 0.0], [0.0, scale]])
B = np.float32([[pad_left], [pad_top]])
M = np.hstack([A, B])
return M, output_height, output_width
def testing_transform(height, width, max_stride):
h_pad, w_pad = round(height / max_stride + 0.51) * max_stride, round(width / max_stride + 0.51) * max_stride
pad_left = (w_pad - width) // 2
pad_top = (h_pad - height) // 2
A = np.eye(2, dtype='float32')
B = np.float32([[pad_left], [pad_top]])
M = np.hstack([A, B])
return M, h_pad, w_pad
def invert_transform(M):
# T = A @ x + B => x = A_inv @ (T - B) = A_inv @ T + (-A_inv @ B)
A_inv = np.float32([[1. / M[0, 0], 0.0], [0.0, 1. / M[1, 1]]])
B_inv = -A_inv @ M[:, 2:3]
M_inv = np.hstack([A_inv, B_inv])
return M_inv
def affine_transform_coords(coords, M):
A, B = M[:2, :2], M[:2, 2:3]
transformed_coords = A @ coords + B
return transformed_coords
class LetterboxTransformer:
def __init__(self, height=None, width=None, mode='training', max_stride=128):
"""Resize the input images. For `mode='training'` the resolution is fixed to `height` x `width`.
The resolution is changed but the aspect ratio is kept.
In `mode='testing'` the input is padded to the next bigger multiple of `max_stride` of the network.
The orginal resolutions is thus kept."""
self.height = height
self.width = width
self.mode = mode
self.max_stride = max_stride
self.M = None
self.M_inv = None
def __call__(self, image):
h, w = image.shape[:2]
if self.mode == 'training':
M, h_out, w_out = training_transform(h, w, self.height, self.width)
elif self.mode == 'testing':
M, h_out, w_out = testing_transform(h, w, self.max_stride)
# https://answers.opencv.org/question/33516/cv2warpaffine-results-in-an-image-shifted-by-05-pixel
# This is different from `cv2.resize(image, (resize_width, resize_height))` & pad
letterbox = cv2.warpAffine(image, M, (w_out, h_out))
self.M = M
self.M_inv = invert_transform(M)
return letterbox
def correct_box(self, x1, y1, x2, y2):
coords = np.float32([[x1, x2], [y1, y2]])
coords = affine_transform_coords(coords, self.M_inv)
x1, y1, x2, y2 = coords[0, 0], coords[1, 0], coords[0, 1], coords[1, 1]
return x1, y1, x2, y2
def correct_coords(self, coords):
coords = affine_transform_coords(coords, self.M_inv)
return coords
#查看效果
from matplotlib import pyplot as plt
from matplotlib import image
fn = '/home/hxybs/centerNet/Centernet-Tensorflow2/data/val2017/000000000885.jpg'
letterbox_transformer = LetterboxTransformer(256, 556)
img = cv2.imread(fn)
pimg = letterbox_transformer(img)
plt.figure()
plt.imshow(img)
plt.figure()
plt.imshow(pimg)
plt.show()
效果:
计算图片数据集的均值方差
保证所有的图片都是统一尺寸
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from imageio import imread
filepath = r'/home/xxx/images' # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum(img[:, :, 0])
G_channel = G_channel + np.sum(img[:, :, 1])
B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512 # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))
python图像处理常用方法的更多相关文章
- Python图像处理库:Pillow 初级教程
Python图像处理库:Pillow 初级教程 2014-09-14 翻译 http://pillow.readthedocs.org/en/latest/handbook/tutorial.html ...
- Python图像处理之验证码识别
在上一篇博客Python图像处理之图片文字识别(OCR)中我们介绍了在Python中如何利用Tesseract软件来识别图片中的英文与中文,本文将具体介绍如何在Python中利用Tesseract ...
- 【python图像处理】图像的缩放、旋转与翻转
[python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...
- Python图像处理库(1)
转自:http://www.ituring.com.cn/tupubarticle/2024 第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Py ...
- Python图像处理库:PIL中Image,ImageDraw等基本模块介绍
Python图像处理库:PIL中Image,ImageDraw等基本模块介绍 标签: 图像处理PILPYTHON 2016-08-19 10:58 461人阅读 评论(0) 收藏 举报 分类: 其他 ...
- Python图像处理库PIL中图像格式转换(一)
在数字图像处理中,针对不同的图像格式有其特定的处理算法. 所以,在做图像处理之前,我们须要考虑清楚自己要基于哪种格式的图像进行算法设计及事实上现.本文基于这个需求.使用python中的图像处理库PIL ...
- python 图像处理中二值化方法归纳总结
python图像处理二值化方法 1. opencv 简单阈值 cv2.threshold 2. opencv 自适应阈值 cv2.adaptiveThreshold 3. Otsu's 二值化 例子: ...
- python图像处理:一福变五福
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城 ...
- Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...
随机推荐
- C# NPOI的数据批量导入数据库
public ActionResult Upload(HttpPostedFileBase Namefile) { //判断文件是否存在 if ...
- vue 中 {{}} 和 v-text 和 v-html 区别
data: { message:'<h3>我是一只小小小小鸟!</h3>' }, <div class="" >{{message}}</ ...
- windows自带的颜色编辑器居中
void xxx::SetOSDColor(CLabelUI * pLabel) { COLORREF color = RGB(*, *, *); CColorDialog cdlg(color, C ...
- TypeScript 文件引入 Html (ts import html webpack)
我们的目标是把html引入ts文件,webpack打包时就能把html打进js文件,减少文件加载啦 1 安装 text-loader npm install text-loader --save-de ...
- Day2-T1
原题目 Describe:贪心,左边和右边中选字典序小的 code: #include<bits/stdc++.h> using namespace std; int n,step,hea ...
- 线性数据结构案例1 —— 单向链表中获取倒数k个节点
一.介绍 先遍历整个链表获取链表长度length,然后通过 (length-index) 方式得到我们想要节点在链表中的位置. 二.代码 public Node findLastIndexNode( ...
- 63.Python中contains和icontains
1. contains: 进行大小写敏感的判断,某个字符串是否包含在指定的字段中,这个判断条件使用大小写敏感进行判断,因此在被翻译成"SQL"语句的时候,会使用"like ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 数据类型
使用编程语言进行编程时,需要用到各种变量来存储各种信息.变量保留的是它所存储的值的内存位置.这意味着,当创建一个变量时,就会在内存中保留一些空间. 可能需要存储各种数据类型(比如字符型.宽字符型.整型 ...
- css 网格线
白色网格线 background: #58a; background-image: linear-gradient(rgba(255,255,255,.3) 1px, transparent 0), ...
- POJ 3083:Children of the Candy Corn
Children of the Candy Corn Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11015 Acce ...