BFPRT算法(求第K小的数字)
BFPRT算法:
1.介绍:
BFPRT算法又叫中位数的中位数算法,主要用于在无序数组中寻找第K大或第K小的数,它的最坏时间复杂度为O(n),它是由Blum,Floyd,Pratt,Rivest,Tarjan提出,它的思想是修改快速选择算法(快排)的主元选取方法,提高在最坏情况下的时间复杂度。
2.具体方法:
BFPRT算法主要由两部分组成:快排和基准选取函数。基准选取函数就是中位数的中位数算法的实现,具体来说--就是讲快排的基准选取策略进行了优化,改为每次尽可能的选择中位数作为基准。
所以说算法的核心就是通过基准选取函数找一个合理的划分值,然后就是快排的Partition过程,判断等于区域(利用区域的下标进行判断)是否命中k,否则向两边其中一边递归。
实现过程:
1.将给定的数组‘arr[N]’划分为多个小组,每5个一组,小于5个的单独成组,只是在逻辑上对数组进行了分组,时间复杂度为O(N)
2.每个组进行组内排序,对5个数的排序时间是O(1),只保证组内有序,共有N/5个组,时间复杂度:O(1)*N/5=O(N).
3.得到每个组的“上中位数”,在组成新的数组newarr[](未必有序),长度是N/5。
[上中位数]:
对于奇数个数,就是中位数,比如 1 2 3 4 5,中位数:3
对于偶数个数,为前一个数,比如 1 2 3 4 ,中位数为:2
4.然后求得newarr[]的中位数,即中位数的中位数mm,作为划分值。
5.Partition过程:时间复杂度:O(N).
6.判断快排后左右指针重合的位置i+1是否等于k,大于则向右递归,小于则向左递归。
看完算法的过程,我们知道主要有这些函数:1.求中位数,2.Partition函数,3.插入排序函数(被求中位数函数调用),4.求key(即中位数的中位数)。
#include <iostream>
#include <vector>
using namespace std;
int GetMedian(vector<int>a,int begin, int end);
int medianOfMedians(vector<int>a, int begin, int end);
void InsertSort(vector<int>&a,int begin, int end);
int select(vector<int>&a, int begin, int end, int K);
int Get_MinKnum_By_BFPRT(vector<int>&a,int K);
vector<int> Partition(vector<int>&a, int l,int r, int pKey);
int main()
{
printf("初始数组a中的元素:");
for(int i = 0; i<a.size();++i)
cout<<a[i]<<" ";
cout<<"\n\n";
printf(" Get_MinKnum_By_BFPRT 获得的第5大的数是:%d\n\n",Get_MinKnum_By_BFPRT(a,5));
printf("用于检验:数组a排序后的元素:");
InsertSort(a,0,a.size()-1);
for(int i = 0; i<a.size();++i)
cout<<a[i]<<" ";
cout<<"\n\n";
return 0;
}
//插入排序(为了求取中位数)
void InsertSort(vector<int>&a,int begin,int end)
{
if(begin == end) return;
for (int i = begin+1; i != end+1; ++i)
{
for (int j = i - 1; j >= begin ; j--)
{
if(a[j+1] < a[j])
swap(a[j],a[j+1]);
else
break;
}
}
}
//获取中位数
int GetMedian(vector<int>a,int begin, int end)
{
InsertSort(a,begin,end);
int sum = begin+end;
int mid = (sum/2) + (sum%2);
return a[mid];
}
//Partition过程
vector<int> Partition(vector<int>&a, int l,int r, int pKey)
{
int less = l-1;
int more = r+1;
int pos = l;
while(pos < more)
{
if(a[pos] < pKey){
swap(a[++less],a[pos++]);
}else if (a[pos] > pKey){
swap(a[--more],a[pos]);
}else{
pos++;
}
}
std::vector<int> range;
range.push_back(less+1);
range.push_back(more-1);
return range;
}
//求取划分值pKey,中位数数组的中位数
int medianOfMedians(vector<int>a, int begin, int end)
{
int num = end-begin+1;
int offset = num % 5 == 0 ? 0 : 1; //用于不足5个元素自成一组
std::vector<int> newarr(num/5+offset);
for (int i = 0; i < newarr.size(); ++i)
{
int beginI = begin + i*5;
int endI = beginI + 4;
//GetMedian()是获取每组的中位数,之后存到新数组中
newarr[i] = GetMedian(a,beginI,min(end,endI)); //取min值是因为要处理不足5个一组的情况
}
return select(newarr,0,newarr.size()-1,newarr.size()/2); //获取newarr[]的中位数
//递归的调用自己求上中位数
}
//select函数:给定一个数组和范围,求位于第k位置上的数
int select(vector<int>&a, int begin, int end, int K)
{
if(begin == end)
return a[begin];
int pKey = medianOfMedians(a,begin,end);
vector<int> range = Partition(a,begin,end,pKey);
if (K >= range[0] && K <= range[1]){
return a[K];
}
else if (K < range[0]) {
return select(a, begin, range[0]-1, K);
}
else {
return select(a, range[1] + 1, end, K);
}
}
int Get_MinKnum_By_BFPRT(vector<int>&a,int K)
{
return select(a,0,a.size()-1,K-1);
}
读到这里大家肯定还是一知半解,很多地方还是云里雾里,例如为甚吗一定要将数组划分为N/5,这个我也不是很明白,有兴趣的可以看看BFPRT算法原理,讲的更加深入.
BFPRT算法(求第K小的数字)的更多相关文章
- 算法导论学习之线性时间求第k小元素+堆思想求前k大元素
对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...
- 数组中第K小的数字(Google面试题)
http://ac.jobdu.com/problem.php?pid=1534 题目1534:数组中第K小的数字 时间限制:2 秒 内存限制:128 兆 特殊判题:否 提交:1120 解决:208 ...
- 九度OJ 1534 数组中第K小的数字 -- 二分查找
题目地址:http://ac.jobdu.com/problem.php?pid=1534 题目描述: 给定两个整型数组A和B.我们将A和B中的元素两两相加可以得到数组C. 譬如A为[1,2],B为[ ...
- 九度OJ 题目1534:数组中第K小的数字(二分解)
题目链接:点击打开链接 题目描述: 给定两个整型数组A和B.我们将A和B中的元素两两相加可以得到数组C. 譬如A为[1,2],B为[3,4].那么由A和B中的元素两两相加得到的数组C为[4,5,5,6 ...
- 九度 1534:数组中第K小的数字(二分法变形)
题目描述: 给定两个整型数组A和B.我们将A和B中的元素两两相加可以得到数组C.譬如A为[1,2],B为[3,4].那么由A和B中的元素两两相加得到的数组C为[4,5,5,6].现在给你数组A和B,求 ...
- 题目1534:数组中第K小的数字 ——二分
http://ac.jobdu.com/problem.php?pid=1534 给定两个整型数组A和B.我们将A和B中的元素两两相加可以得到数组C.譬如A为[1,2],B为[3,4].那么由A和B中 ...
- 九度oj 题目1534:数组中第K小的数字
题目描述: 给定两个整型数组A和B.我们将A和B中的元素两两相加可以得到数组C. 譬如A为[1,2],B为[3,4].那么由A和B中的元素两两相加得到的数组C为[4,5,5,6]. 现在给你数组A和B ...
- 求第k小的数
题目链接:第k个数 题意:求n个数中第k小的数 题解: //由快速排序算法演变而来的快速选择算法 #include<iostream> using namespace std; const ...
- 树状数组求第k小的元素
int find_kth(int k) { int ans = 0,cnt = 0; for (int i = 20;i >= 0;i--) //这里的20适当的取值,与MAX_VAL有关,一般 ...
随机推荐
- 吴裕雄--天生自然python学习笔记:Python3 标准库概览
操作系统接口 os模块提供了不少与操作系统相关联的函数. >>> import os >>> os.getcwd() # 返回当前的工作目录 'C:\\Python ...
- Java日期时间API系列12-----Jdk8中java.time包中的...
package com.xkzhangsan.time.test; import java.time.LocalDateTime;import java.util.Date; import com.x ...
- js中的call
//例1 <script> window.color = 'red'; document.color = 'yellow'; var s1 = {color: 'blue' }; func ...
- <USACO06FEB>奶牛零食Treats for the Cowsの思路
写不来dp的日常 ....就这样吧 #include<cstdio> #include<cstring> #include<iostream> #include&l ...
- webpack进阶之loader篇
webpack的loaders是一大特色,也是很重要的一部分.这遍博客我将分类讲解一些常用的laoder 一.loaders之 预处理 css-loader 处理css中路径引用等问题 style-l ...
- ES插件升级
#!/bin/bash mkdir -p /home/esuser cd /home/esuser wget http://10.12.xx.xx:8090/search_plugins/sd_wai ...
- tp5.1 请求时间格式化
当前时间:{$Request.time|date='Y-m-d H:i:s'} 注意database.php的配置!记录一下!
- 201771010105—达拉草 实验一 软件工程准备—<软件工程构建之法—初步了解和认识>
项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...
- python中excel数据分组处理
1.场景描述 因文本相似性热度统计(python版)需求中要根据故障类型进行分组统计,需要对excel进行分组后再分词统计,简单记录下,有需要的朋友可以直接拿走,不客气! 2.解决方案 采用panda ...
- C#小游戏—钢铁侠VS太空侵略者
身为漫威迷,最近又把<钢铁侠>和<复仇者联盟>系列又重温了一遍,真的是印证了那句话:“读书百遍,其意自现”.看电影一个道理,每看一遍,都有不懂的感受~ 不知道大伙是不是也有同样 ...