4.      RDD的依赖关系

6.1      RDD的依赖

RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

6.2      窄依赖

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用

总结:窄依赖我们形象的比喻为独生子女。窄依赖不会产生shuffle,比如说:flatMap/map/filter....

6.3      宽依赖

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition

总结:宽依赖我们形象的比喻为超生。宽依赖会产生shuffle,比如说:reduceByKey/groupByKey...

6.4      Lineage(血统)

RDD只支持粗粒度转换,即只记录单个块上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

7.  RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或者缓存数据集。当持久化某个RDD后,每一个节点都将把计算分区结果保存在内存中,对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

7.1 RDD缓存方式

RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

rdd1.cache
rdd2.persist(org.apache.spark.storage.StorageLevel.DISK_ONLY)

cache和persist区别:

cache:默认是把数据缓存在内存中,其本质是调用了persist方法

eg. rdd1.cache
persist:它可以把数据缓存在磁盘中,它可以有很多丰富的缓存级别,这些缓存级别都被封装在一个object StorageLevel

eg.  rdd3.persist(org.apache.spark.storage.StorageLevel.DISK_ONLY)

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。 

清除缓存数据:

(1)自动清除
整个应用程序结束之后,缓存中的所有数据自动清除
(2)手动清除
手动调用rdd的unpersist(true)  //参数true,表示阻塞整个程序,知道所有缓存都清除后,才执行后面的逻辑;false,表示边清除缓存边执行后面的逻辑。

什么时候设置缓存:

(1)某个rdd后期被使用了多次
val rdd2=rdd1.flatMap(_.split(" "))
val rdd3=rdd1.map((_,1))
上面rdd1被使用了多次,后期可以对rdd1的结果数据进行缓存,缓存之后后面用到了它,可以直接从缓存中获取得到。避免重新计算,浪费时间。

(2)一个rdd的结果数据计算逻辑比较复杂或者是计算时间比较长-------> 总之 它的数据来之不易
val rdd1=sc.textFile("/words.txt").flatMap(_.split(" ")).xxxx .xxxxx..............

8.  DAG的生成

8.1 什么是DAG

DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就形成了DAG,根据RDD之间依赖关系的不同将DAG划分成不同的Stage(调度阶段)。对于窄依赖,partition的转换处理在一个Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。

9.  Spark任务调度

9.1 任务调度流程图

各个RDD之间存在着依赖关系,这些依赖关系就形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分。完成了Stage的划分。DAGScheduler基于每个Stage生成TaskSet,并将TaskSet提交给TaskScheduler。TaskScheduler 负责具体的task调度,最后在Worker节点上启动task。

任务调度的步骤详细说明:

(1)Driver会运行客户端main方法中的代码,代码就会构建SparkContext对象,在构建SparkContext对象中,会创建DAGScheduler和TaskScheduler,然后按照rdd一系列的操作生成DAG有向无环图。最后把DAG有向无环图提交给DAGScheduler。

(2)DAGScheduler拿到DAG有向无环图后,按照宽依赖进行stage的划分,这个时候会产生很多个stage,每一个stage中都有很多可以并行运行的task,把每一个stage中这些task封装在一个taskSet集合中,最后提交给TaskScheduler。

(3)TaskScheduler拿到taskSet集合后,依次遍历每一个task,最后提交给worker节点的exectuor进程中。task就以线程的方式运行在worker节点的executor进程中。

9.2 DAGScheduler

(1)DAGScheduler对DAG有向无环图进行Stage划分。

(2)记录哪个RDD或者 Stage 输出被物化(缓存),通常在一个复杂的shuffle之后,通常物化一下(cache、persist),方便之后的计算。

(3)重新提交shuffle输出丢失的stage(stage内部计算出错)给TaskScheduler

(4)将 Taskset 传给底层调度器

a)– spark-cluster TaskScheduler

b)– yarn-cluster YarnClusterScheduler

c)– yarn-client YarnClientClusterScheduler

9.3 TaskScheduler

(1)为每一个TaskSet构建一个TaskSetManager 实例管理这个TaskSet 的生命周期

(2)数据本地性决定每个Task最佳位置

(3)提交 taskset( 一组task) 到集群运行并监控

(4)推测执行,碰到计算缓慢任务需要放到别的节点上重试

(5)重新提交Shuffle输出丢失的Stage给DAGScheduler

sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成的更多相关文章

  1. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

  2. RDD的依赖关系

    RDD的依赖关系 Rdd之间的依赖关系通过rdd中的getDependencies来进行表示, 在提交job后,会通过在DAGShuduler.submitStage-->getMissingP ...

  3. 021 RDD的依赖关系,以及造成的stage的划分

    一:RDD的依赖关系 1.在代码中观察 val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) val resultRD ...

  4. 【Spark】RDD的依赖关系和缓存相关知识点

    文章目录 RDD的依赖关系 宽依赖 窄依赖 血统 RDD缓存 概述 缓存方式 RDD的依赖关系 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency) 和宽依赖 ...

  5. 大数据学习day23-----spark06--------1. Spark执行流程(知识补充:RDD的依赖关系)2. Repartition和coalesce算子的区别 3.触发多次actions时,速度不一样 4. RDD的深入理解(错误例子,RDD数据是如何获取的)5 购物的相关计算

    1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是 ...

  6. Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)

    本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...

  7. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  8. Spark之RDD依赖关系及DAG逻辑视图

    RDD依赖关系为成两种:窄依赖(Narrow Dependency).宽依赖(Shuffle Dependency).窄依赖表示每个父RDD中的Partition最多被子RDD的一个Partition ...

  9. Spark-Core RDD依赖关系

    scala> var rdd1 = sc.textFile("./words.txt") rdd1: org.apache.spark.rdd.RDD[String] = . ...

随机推荐

  1. 安装Redis教程

    今天因为要用到redis中间件,于是自己就尝试安装一下,我把步骤记录了,分享给大家,希望能对大家有帮助! 我的博客地址: https://www.cnblogs.com/themysteryofhac ...

  2. C:函数 注意点

    形参 在定义函数时指定的形参,在未出现函数调用时,它们并不占内存中的存储单元,因此称它们是形式参数或虚拟参数,简称形参,表示它们并不是实际存在的数据,所以,形参里的变量不能赋值. C不像C++里一样可 ...

  3. PAT 1014 Waiting in Line (模拟)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  4. TensorFlow:谷歌图像识别网络inception-v3下载与查看结构

    学习博客: # https://www.cnblogs.com/felixwang2/p/9190731.html # https://www.cnblogs.com/felixwang2/p/919 ...

  5. Java补强转

    /* 对于byte/short/char三种类型来说,如果右侧赋值的数值没有超过范围, 那么javac编译器将会自动隐含地为我们补上一个(byte)(short)(char). 1. 如果没有超过左侧 ...

  6. windows ,linux永久和临时修改pip源

    临时修改(建议)pypi镜像源方法:如果有untrust 报错,可使用https开头的网站,或加上--trusted 例如: pip install pywin32 -i http://mirrors ...

  7. JAVA(1)之关于对象数组作形参名的方法的使用

    public class Test{ int tour; public static void cs(Test a[]) { for (int i = 0; i < a.length; i++) ...

  8. EAP认证

    EAP信息交换: 上图中展示的是OTP(一次性密码)实现EAP交换过程,具体的EAP交换过程如下: 步骤1:请求方向认证方发送EAPOL-Start消息,通知对方已经做到了认证准备(注意:若会话由认证 ...

  9. UCS内存问题排查

    UCS使用双列直插式内存模块(Dual In-line Memory Module (DIMM) )作为RAM模块. 根据文档介绍,主要有如下部分:1.Memory placement <内存放 ...

  10. LPWAN

    典型LPWA技术: 1 Sigfox技术由同名的法国Sigfox公司设计研发,成立于2010年,因为Sigfox网络由Sigfox公司为主导进行全球部署,这样能最大程度保证网络服务质量的统一性和稳定性 ...