PCA的实质就是要根据样本向量之间的相关性排序,去掉相关性低的信息,也就是冗余的特征信息。

我们都知道噪声信号与待测量的信号之间实际上是没有相关性的,所以我我们利用这个原理就可以将与待测量无关的噪声信号PCA去噪

PCA的原理也就是它的简单的实现过程就是:

首先将样本数据构造成对应的数据矩阵然后求取该数据矩阵的协方差矩阵,协方差矩阵实际上就是表示随机向量之间的相关性的矩阵,那么为什么协方差矩阵可以表示随机向量之间的相关性呢?

协方差矩阵是怎么求解的呢?我们都知道方差实际上表示的是数据偏离中心的程度,方差越大越偏离中心。那么可以理解协方差表示的是任意两个样本之间的相关程度。

仿照方差的定义:

来度量各个维度偏离其均值的程度,协方差可以这样来定义:

接下来就是求解协方差矩阵的特征值和特征向量,那么关于特征值与特征向量(特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。https://jingyan.baidu.com/article/3065b3b68c6bb6becff8a488.html),根据特征值对特征向量进行排序就可以得到特征直方图,抽取其中的几个维度的特征向量组成特征矩阵,这个矩阵就是所谓的投影矩阵,然后用投影矩阵对原样本数据做一个转换(即相乘的过程)。这样就得到了提取特征值下的处理数据结果了。

PCA的原理简述的更多相关文章

  1. 主成分分析(PCA)原理及R语言实现

    原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...

  2. 主成分分析(PCA)原理及R语言实现 | dimension reduction降维

    如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...

  3. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  4. TCP/IP协议工作原理简述

    TCP/IP协议工作原理简述 // */ // ]]>   TCP/IP协议工作原理简述 Table of Contents 1 概要 2 应用层 3 传输层 4 网络层 5 链路层 1 概要 ...

  5. ButterKnife的原理简述

    ButterKnife的原理简述 注解处理器Java5 中叫APT(Annotation Processing Tool),在Java6开始,规范化为 Pluggable Annotation Pro ...

  6. Excel阅读模式/聚光灯开发技术序列作品之三 高级自定义任务窗格开发原理简述—— 隐鹤

    Excel阅读模式/聚光灯开发技术序列作品之三 高级自定义任务窗格开发原理简述——    隐鹤 1. 引言 Excel任务窗格是一个可以用来存放各种常用命令的侧边窗口(准确的说是一个可以停靠在类名为x ...

  7. Excel阅读模式/聚光灯开发技术之二 超级逐步录入提示功能开发原理简述—— 隐鹤 / HelloWorld

    Excel阅读模式/聚光灯开发技术之二 超级逐步录入提示功能开发原理简述———— 隐鹤  /  HelloWorld 1. 引言 自本人第一篇博文“Excel阅读模式/单元格行列指示/聚光灯开发技术要 ...

  8. FileCloud 的原理简述&自己搭建文件云

    FileCloud 的原理简述&自己搭建文件云 copyright(c) by zcy 关于如何使用IIS创建asp服务,请读者自行研究 注:不要忘记添加入站规则 代码的存储: 根目录 fil ...

  9. 主成分分析法(PCA)原理和步骤

    主成分分析法(PCA)原理和步骤 主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数 ...

随机推荐

  1. Tomcat导入工程

    Windows->Preference->Server->Runtime environment->Add浏览路径(选择Workbench default JRE)

  2. 无车承运前世今生,5G货运管家期待您的加入

    历时三年的无车承运人试点工作结束,从2020年1月1日起,将执行新的暂行<办法>,在这样一个承前启后的阶段,无车承运人的命运如何?网络货运经营者又是何物? 在新赛道下,将迎来什么样的机遇和 ...

  3. 数据类型操作简单对比(R和Python)

    一.R方面 R中类型:向量(vector).数据框.矩阵.列表 数据处理转换时:数值型num.因子(factor).字符型等等 1)matrix feature:1.二维数组2.每个元素必须有相同的数 ...

  4. Python说文解字_杂谈06

    1. 序列类型的分类: 容器类型:list.tuple,deque 扁平序列:str.bytes.bytearray.array.array 可变序列:list.dequte.bytearray.ar ...

  5. c2000 N2A1 设置 KonNaD Settings & User Manual

    KonNaD Settings & User Manual c2000 N2A1  两个开关都推到左边,都设置成off

  6. PAT Basic 1007 素数对猜想 (20) [数学问题-素数]

    题目 让我们定义 dn 为:dn = pn+1 – pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数."素数对猜想"认为"存在⽆穷多对 ...

  7. Python语言学习:字典常用的方法

    1. 增加:字典[key]=value(不存在的key和value) info={ 'stu1101':'TengLan', 'stu1102':'LuoZe', 'stu1103':'XiaoZe' ...

  8. 个性化bash

    zsh/on-my-zsh Ubuntu,deepin, 等可以使用  apt install 的系统  apt install zsh 一般就可以自动安装 RedHat(Fedora,Centos) ...

  9. SRS|Stratified sampling|系统抽样|Cluster sampling|multistage sampling|

    生物统计学 总体和抽样 抽样方法: ========================================================= 简单随机抽样SRS:随机误差,系统误差 标准误, ...

  10. 2019收藏盘点(编程语言/AI/面试/实用工具)

    2020.1.5更新 我看过的后面会加上评价 编程学习 java开源项目汇总: https://github.com/Snailclimb/awesome-java 大数据学习入门: https:// ...