题目

  点这里看题目。

分析

  设\(count(x)\)为\(x\)的二进制中\(1\)的个数。因此\(f(u,v)=count(u\oplus v)\)

  看一看每次转移,我们发现最不友好的东西就是\(f(u,v)\),因此我们得想办法把它从我们的计算中丢掉。

  发现对于\([0,n)\)中的所有数,两两异或之后不会超过\(n\)。并且对于一个固定的数\(x\),其\(count(x)\)是不会变的。因此我们考虑将\(b\)数组转存出来:

\[a[i]=b[count(i)]
\]

  因此有:

\[e[u]=\sum_v a[u\oplus v]e[v]
\]

  考虑改变枚举顺序:

\[\begin{aligned}
e[u] &=\sum_v a[u\oplus v]e[v]\\
&=\sum_{i=0}^ma[i]\sum_{u\oplus v=i}e[v]\\
&=\sum_{i=0}^m a[i]\sum_{v\oplus i=u}e[v]\\
&=\sum_{v\oplus i=u}a[i]e[v]\end{aligned}
\]

  因此每次转移都是一个异或卷积的形式,可以用 FWT 优化一发。由于需要转移\(t\)次,还可用快速幂。 FWT 只需要在初始和最后做,中途快速幂不需要。时间是\(O(mn + n\log_2t)\)。

  这里还有一问题。由于本题给的是任意模数,可能不存在\(2\)逆元。

  众所周知, 异或 FWT 还有一种版本,也就是像 FFT 一样,正变换和逆变换大部分一样,但是逆变换会在最后除掉向量长度(事实上 FWT 和 FFT 有很多相似处,可以在 K 进制 FWT 中了解到)

  因此我们可以使用上述的 FWT 。但是这里还有问题,\(p\)可能也没有\(n\)的逆元。根据同余基本性质:

\[a\equiv b\pmod p\Leftrightarrow \frac a d\equiv \frac b d\pmod {\frac p d}(d|\gcd\{a,b,m\})
\]

  我们把\(p\)扩大\(n\)倍之后就可以直接除得正确答案了。

  最后一个问题,\(n\times p\)是\(10^{15}\)的,如果直接乘法会溢出(什么? __int128 ?)。因此我们需要用 long double 来模拟取模(龟速乘太慢了)。

代码

#include <cstdio>

typedef long long LL;
typedef long double LB; const int MAXM = 25, MAXN = 1.5e6 + 5; template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
} template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} LL E[MAXN], C[MAXN];
int B[MAXM];
LL T, mod;
int N, M; int lowbit( const int &x ) { return x & ( -x ); }
LL fix( const LL a ) { return ( a % mod + mod ) % mod; }
int count( int x ) { int ret = 0; while( x ) ret ++, x -= lowbit( x ); return ret; } LL mul( const LL a, const LL b ) { return fix( a * b - ( LL ) ( ( LB ) a / mod * b ) * mod ); } void FWT( LL *f, const int mode )
{
LL t1, t2;
for( int s = 2 ; s <= N ; s <<= 1 )
for( int i = 0, t = s >> 1 ; i < N ; i += s )
for( int j = i ; j < i + t ; j ++ )
{
t1 = f[j], t2 = f[j + t];
f[j] = ( t1 + t2 ) % mod, f[j + t] = fix( t1 - t2 );
}
if( ~ mode ) return ;
for( int i = 0 ; i < N ; i ++ ) f[i] /= N;
} void mul( LL *ret, LL *mult )
{
for( int i = 0 ; i < N ; i ++ )
ret[i] = mul( ret[i], mult[i] );
} int main()
{
read( M ), read( T ), read( mod );
N = 1 << M, mod *= N;
for( int i = 0 ; i < N ; i ++ ) read( E[i] );
for( int i = 0 ; i <= M ; i ++ ) read( B[i] );
for( int i = 0 ; i < N ; i ++ ) C[i] = B[count( i )];
FWT( E, 1 ), FWT( C, 1 );
while( T )
{
if( T & 1 ) mul( E, C );
mul( C, C ), T >>= 1;
}
FWT( E, -1 );
for( int i = 0 ; i < N ; i ++ ) write( E[i] ), puts( "" );
return 0;
}

[CF453D]Little Pony and Elements of Harmony的更多相关文章

  1. 【CF453D】 Little Pony and Elements of Harmony(FWT)

    题面 传送门 设\(a\)的递推公式为 \[a_i=\sum_ja_jb[count(i\oplus j)]\] 其中\(\oplus\)为异或,\(count(i)\)表示\(i\)的二进制中\(1 ...

  2. 453D Little Pony and Elements of Harmony

    传送门 分析 我们可以将所有的b[i^j]直接对应到b[f(i^j)]上 于是显然可以fwt 我们对b进行t次fwt之后直接将答案与e0卷起来即可 注意由于模数不确定,我们可以将模数扩大$2^m$然后 ...

  3. CF453(Div1 简单题解)

    A .Little Pony and Expected Maximum pro:给定M,N,表示一个M面的骰子,甩N次,问出现的最大的数的期望. sol:容斥,f(i)表示最大数<=i的期望,那 ...

  4. CF453B Little Pony and Harmony Chest (状压DP)

    CF453B CF454D Codeforces Round #259 (Div. 2) D Codeforces Round #259 (Div. 1) B D. Little Pony and H ...

  5. Codeforces Round #259 (Div. 2) D. Little Pony and Harmony Chest 状压DP

    D. Little Pony and Harmony Chest   Princess Twilight went to Celestia and Luna's old castle to resea ...

  6. Codeforces Round #259 (Div. 2) D

    D. Little Pony and Harmony Chest time limit per test 4 seconds memory limit per test 256 megabytes i ...

  7. codeforces Round #259(div2) D解决报告

    D. Little Pony and Harmony Chest time limit per test 4 seconds memory limit per test 256 megabytes i ...

  8. Codeforces 4538 (状态压缩dp)Little Pony and Harmony Chest

    Little Pony and Harmony Chest 经典状态压缩dp #include <cstdio> #include <cstring> #include < ...

  9. [CF453B]Little Pony and Harmony Chest

    [CF453B]Little Pony and Harmony Chest 题目大意: 给你一个长度为\(n(n\le100)\)的正整数序列\(A(A_i\le30)\),求一个正整数序列\(B\) ...

随机推荐

  1. 【PHP+MySQL学习笔记】php操作MySQL数据库中语句

    1.连接 MYSQL 服务器的函数 mysql_connect();<?php $con = mysql_connect("localhost","root&quo ...

  2. sourcetree 拉取 一直让输入密码

    以下方法都没用 在控制台中 git gc git prune git config --global credential.helper store git pull 输入账号密码 git pull ...

  3. Angular SPA基于Ocelot API网关与IdentityServer4的身份认证与授权(四)

    在上一讲中,我们已经完成了一个完整的案例,在这个案例中,我们可以通过Angular单页面应用(SPA)进行登录,然后通过后端的Ocelot API网关整合IdentityServer4完成身份认证.在 ...

  4. windows 10 2016 企业版 长期服务 激活方式

    试了很多,失败. 使用这个ok———————————————————————————————— 使用方式: 2.1.下载AAct.exe  https://www.baidu.com/link?url ...

  5. C#正则表达式基础

    namespace ---> System.Text.RegularExpressions. static void Main(string[] args) { // if (IsInputMa ...

  6. iOS开发MD5、SHA1

    MD5: + (NSString *)md5:(NSString *)input { const char *cStr = [input UTF8String]; unsigned char dige ...

  7. [Firefox附加组件]0004.上下文菜单项

    在我们平常浏览网页是经常要对网页类容进行一些操作处理,如复制,翻译,搜索,打印打印等,今天我们就学习下如何在Firefox中我们如何通过附加组件实现这些操作. 开发步骤 1.终端窗口运行以下命令创建项 ...

  8. [PHP工具推荐]0001.分析和解析代码的7大工具

    引言:PHP已成为时下最热门的编程语言之一,然而却有许多PHP程序员苦恼找不到合适的工具来帮助自己分析和解析PHP代码.今天SD就为大家介绍几个非常不错的工具,来帮助程序员们提高自己的工作效率,一起来 ...

  9. PMP | 备考笔记

    (持续更新......) 五大过程组和十大知识领域是PMP的重要组成部分,也是这门课的重点线索,本文会逐步迭代.渐进明细的来补充完善这个体系. (先放个图吧) 以下每个模块记录自己有点模糊的地方 项目 ...

  10. 拨开云雾-Verilog是个大杂烩(中性)

    https://mp.weixin.qq.com/s/HKxX_79DtnXmFU1Mwt1GwA   一. 有意为之   Verilog是个大杂烩,这是有意而为之.   Verilog IEEE S ...