题目

  点这里看题目。

分析

  设\(count(x)\)为\(x\)的二进制中\(1\)的个数。因此\(f(u,v)=count(u\oplus v)\)

  看一看每次转移,我们发现最不友好的东西就是\(f(u,v)\),因此我们得想办法把它从我们的计算中丢掉。

  发现对于\([0,n)\)中的所有数,两两异或之后不会超过\(n\)。并且对于一个固定的数\(x\),其\(count(x)\)是不会变的。因此我们考虑将\(b\)数组转存出来:

\[a[i]=b[count(i)]
\]

  因此有:

\[e[u]=\sum_v a[u\oplus v]e[v]
\]

  考虑改变枚举顺序:

\[\begin{aligned}
e[u] &=\sum_v a[u\oplus v]e[v]\\
&=\sum_{i=0}^ma[i]\sum_{u\oplus v=i}e[v]\\
&=\sum_{i=0}^m a[i]\sum_{v\oplus i=u}e[v]\\
&=\sum_{v\oplus i=u}a[i]e[v]\end{aligned}
\]

  因此每次转移都是一个异或卷积的形式,可以用 FWT 优化一发。由于需要转移\(t\)次,还可用快速幂。 FWT 只需要在初始和最后做,中途快速幂不需要。时间是\(O(mn + n\log_2t)\)。

  这里还有一问题。由于本题给的是任意模数,可能不存在\(2\)逆元。

  众所周知, 异或 FWT 还有一种版本,也就是像 FFT 一样,正变换和逆变换大部分一样,但是逆变换会在最后除掉向量长度(事实上 FWT 和 FFT 有很多相似处,可以在 K 进制 FWT 中了解到)

  因此我们可以使用上述的 FWT 。但是这里还有问题,\(p\)可能也没有\(n\)的逆元。根据同余基本性质:

\[a\equiv b\pmod p\Leftrightarrow \frac a d\equiv \frac b d\pmod {\frac p d}(d|\gcd\{a,b,m\})
\]

  我们把\(p\)扩大\(n\)倍之后就可以直接除得正确答案了。

  最后一个问题,\(n\times p\)是\(10^{15}\)的,如果直接乘法会溢出(什么? __int128 ?)。因此我们需要用 long double 来模拟取模(龟速乘太慢了)。

代码

#include <cstdio>

typedef long long LL;
typedef long double LB; const int MAXM = 25, MAXN = 1.5e6 + 5; template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
} template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} LL E[MAXN], C[MAXN];
int B[MAXM];
LL T, mod;
int N, M; int lowbit( const int &x ) { return x & ( -x ); }
LL fix( const LL a ) { return ( a % mod + mod ) % mod; }
int count( int x ) { int ret = 0; while( x ) ret ++, x -= lowbit( x ); return ret; } LL mul( const LL a, const LL b ) { return fix( a * b - ( LL ) ( ( LB ) a / mod * b ) * mod ); } void FWT( LL *f, const int mode )
{
LL t1, t2;
for( int s = 2 ; s <= N ; s <<= 1 )
for( int i = 0, t = s >> 1 ; i < N ; i += s )
for( int j = i ; j < i + t ; j ++ )
{
t1 = f[j], t2 = f[j + t];
f[j] = ( t1 + t2 ) % mod, f[j + t] = fix( t1 - t2 );
}
if( ~ mode ) return ;
for( int i = 0 ; i < N ; i ++ ) f[i] /= N;
} void mul( LL *ret, LL *mult )
{
for( int i = 0 ; i < N ; i ++ )
ret[i] = mul( ret[i], mult[i] );
} int main()
{
read( M ), read( T ), read( mod );
N = 1 << M, mod *= N;
for( int i = 0 ; i < N ; i ++ ) read( E[i] );
for( int i = 0 ; i <= M ; i ++ ) read( B[i] );
for( int i = 0 ; i < N ; i ++ ) C[i] = B[count( i )];
FWT( E, 1 ), FWT( C, 1 );
while( T )
{
if( T & 1 ) mul( E, C );
mul( C, C ), T >>= 1;
}
FWT( E, -1 );
for( int i = 0 ; i < N ; i ++ ) write( E[i] ), puts( "" );
return 0;
}

[CF453D]Little Pony and Elements of Harmony的更多相关文章

  1. 【CF453D】 Little Pony and Elements of Harmony(FWT)

    题面 传送门 设\(a\)的递推公式为 \[a_i=\sum_ja_jb[count(i\oplus j)]\] 其中\(\oplus\)为异或,\(count(i)\)表示\(i\)的二进制中\(1 ...

  2. 453D Little Pony and Elements of Harmony

    传送门 分析 我们可以将所有的b[i^j]直接对应到b[f(i^j)]上 于是显然可以fwt 我们对b进行t次fwt之后直接将答案与e0卷起来即可 注意由于模数不确定,我们可以将模数扩大$2^m$然后 ...

  3. CF453(Div1 简单题解)

    A .Little Pony and Expected Maximum pro:给定M,N,表示一个M面的骰子,甩N次,问出现的最大的数的期望. sol:容斥,f(i)表示最大数<=i的期望,那 ...

  4. CF453B Little Pony and Harmony Chest (状压DP)

    CF453B CF454D Codeforces Round #259 (Div. 2) D Codeforces Round #259 (Div. 1) B D. Little Pony and H ...

  5. Codeforces Round #259 (Div. 2) D. Little Pony and Harmony Chest 状压DP

    D. Little Pony and Harmony Chest   Princess Twilight went to Celestia and Luna's old castle to resea ...

  6. Codeforces Round #259 (Div. 2) D

    D. Little Pony and Harmony Chest time limit per test 4 seconds memory limit per test 256 megabytes i ...

  7. codeforces Round #259(div2) D解决报告

    D. Little Pony and Harmony Chest time limit per test 4 seconds memory limit per test 256 megabytes i ...

  8. Codeforces 4538 (状态压缩dp)Little Pony and Harmony Chest

    Little Pony and Harmony Chest 经典状态压缩dp #include <cstdio> #include <cstring> #include < ...

  9. [CF453B]Little Pony and Harmony Chest

    [CF453B]Little Pony and Harmony Chest 题目大意: 给你一个长度为\(n(n\le100)\)的正整数序列\(A(A_i\le30)\),求一个正整数序列\(B\) ...

随机推荐

  1. MySQL索引及优化(3)设计数据库

    一.范式和反范式 优秀的库表设计是高性能数据库的基础.如何才能设计出高性能的库表结构呢?这里必须要提到数据库范式.范式是基础规范,反范式是针对性设计. 1.1.范式 范式是设计数据库结构过程中所要遵循 ...

  2. Null passed to a callee that requires a non-null argument

    OC中定义的方法参数默认是不为空的,如果能够为空需要手动指定__nullable ,我想这个警告是提示开发者警惕可能空参数

  3. 【Java】手把手模拟CAS,瞬间理解CAS的机制

    话不多少,先看个案例,[模拟100个用户,每个用户访问10次网站]”: public class ThreadDemo1 { //总访问量 ; //模拟访问的方法 public static void ...

  4. 【python 】文件下载进度条(装逼利器)

    基础版 import requests url = "http://mp.111ttt.cn/mp3free/81135985.mp3" rsp = requests.get(ur ...

  5. vue实现对文章列表的点赞

    今天要做一个对文章点赞的功能,实现后的样式如下,点赞后的文章下面的大拇指图标会变红,并且点赞数加1 一开始分别遇到过两个问题:1.点文章中的一个赞,所有文章的赞全部变红了 2.点赞后,虽然当前文章的赞 ...

  6. Kubernetes Dashborad 搭建

    需求 基于网页查看Kubernetes 用户管理界面 安装步骤 在控制面板节点部署dashborad kubectl apply -f https://raw.githubusercontent.co ...

  7. 校园网络 luogu P2812 (又是强联通)

    题目传送门!(luogu) 首先考虑问题一 不难想到,如果有一个学校作为终端机,那么跟其处于同一个强联通中的所有学校就可以不用作为终端机了. 那么,问题一也就迎刃而解了:找到所有入度为0的缩点.因为这 ...

  8. [JavaWeb基础] 016.Struts2 国际化配置

    如果一个软件想要让其受众是全球或者是几个国家的人,那么这个软件就需要支持多种语言,那么我们就需要软件的国际化去对一些文字信息进行国际化处理.web也一样,当外国人打开我们的网站,要是看到满屏幕的中文, ...

  9. [Objective-C] 006_Protocol(协议)

    学过java的同学都知道Interface(接口),那么在Objective-C中有没有接口呢?其实 Objective-C中用Protocol(协议)来实现的,在Objective-C具体怎么用,我 ...

  10. 处理异常方式try_catch_finally, throws,throw

    如何处理 Exception 的异常: 抓抛模型:1.抓:异常的处理,有两种方式①try-catch-finally   ②throws+异常类型 2.抛:一旦执行过程中出现异常,会抛出一个异常类的对 ...