Planet Krypton is about to explode. The inhabitants of this planet have to leave the planet immediately. But the problem is that, still some decisions have to be made - where to go, how to go etc. So, the council of Krypton has invited some of the people to meet in a large hall.

There are n people in planet Krypton, for simplicity they are given ids from 1 to n. The council uses a super computer named Oracle to call them in the meeting. Oracle has four types of messages for invitation. The message format is type x y, where x and y are two different person's ids and type is an integer as follows:

1.      1 x y means that either x or y should be present in the meeting.

2.      2 x y means that if x is present, then no condition on y, but if x is absent y should be absent

3.      3 x y means that either x or y must be absent.

4.      4 x y means that either x or y must be present but not both.

Each member of the council has an opinion too. The message format is type x y z, where x, y and z are three different person's ids and type is an integer as follows:

1.      1 x y z means that at least one of x, y or z should be present

2.      2 x y z means that at least one of x, y or z should be absent

Now you have to find whether the members can be invited such that every message by oracle and the council members are satisfied.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a blank line. Next line contains three integers n, m and k (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5) where m means the number of messages by oracle, k means the total members in the council. Each of the next m lines will contain a message of Oracle in the format given above. Each of the next k lines will contain a message of a council member. You can assume that all the ids given are correct.

Output

For each case, print the case number and whether it's possible to invite the people such that all the messages are satisfied. If it's not possible, then print'Impossible.' in a single line. Otherwise, print 'Possible' and the number of invited people and the ids of the invited people in ascending order. Print the line leaving a single space between fields. Terminate this line with a '.'. See the samples for more details. There can be multiple answers; print any valid one.

Sample Input

Output for Sample Input

3

3 2 1

3 2 1

1 2 3

1 1 2 3

4 4 1

2 2 1

4 1 2

4 1 3

4 1 4

2 2 3 4

4 5 0

3 1 2

2 2 3

2 2 4

2 1 2

2 2 1

Case 1: Possible 2 1 3.

Case 2: Impossible.

Case 3: Possible 0.

Note

This is a special judge problem; wrong output format may cause 'Wrong Answer'.

题目大意:

有一个机器产生m个限制,限制有4种:

1.  x or y 至少有1个人参加

2. x不参加 则 y必须不参加,(隐含 y参加 x必须参加)

3. x or y 至少有1个人不参加

4. x & y 同时参加 或者不参加

有 k 个人 进行投票,有2种类别

1. x y z 至少有一个人参加

2. x y z 至少有一个人不参加

有n 个人参加会议,m 个机器限制,k个人投票 (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5)

解题思路:肯定是 2-sat,k比较小直接枚举3^k。剩下的就是一个模板。

建图:

二元关系直接建图,三元关系枚举成二元判断是否可行,不可行,继续枚举,可行输出答案,知道都枚举完,就无解。反正是一个NP完全问题,所以枚举无伤大雅。二元建图,看我博客2-SAT详解,一看就明白。戳死我

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define MAXN 2000+100
#define MAXM 10000+100
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM], Redge[MAXM];
int head[MAXN], edgenum;
int Rhead[MAXN], Redgenum;//这些数组用于copy 这样就不用再次建已经确定的边了
struct Node
{
int op, x, y, z;
};
Node num[5];
int low[MAXN], dfn[MAXN];
int sccno[MAXN], scc_cnt;
int dfs_clock;
stack<int> S;
bool Instack[MAXN];
int N, M, K;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void input()
{
int x, y, z, op;
while(M--)
{
scanf("%d%d%d", &op, &x, &y);
if(op == 1)//x和y至少去一个
{
addEdge(y + N, x);//y不去x去
addEdge(x + N, y);//x不去y去
}
else if(op == 2)
{
addEdge(y, x);//注意 若y去则x是一定去的
addEdge(x + N, y + N);//x不去y也不去
}
else if(op == 3)//x和y至少一个不去
{
addEdge(x, y + N);//x去 y不去
addEdge(y, x + N);//y去 x不去
}
else//两个人只能去一个
{
addEdge(x, y + N);
addEdge(y, x + N);
addEdge(x + N, y);
addEdge(y + N, x);
}
} for(int i = 0; i < K; i++)
scanf("%d%d%d%d", &num[i].op, &num[i].x, &num[i].y, &num[i].z);
memcpy(Rhead, head, sizeof(head));
memcpy(Redge, edge, sizeof(edge));
Redgenum = edgenum;
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
int fp[MAXN];//建立SCC间的映射
bool two_sat()//判断当前情况是否成立
{
find_cut(1, 2*N);
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
return false;
else
{
fp[sccno[i]] = sccno[i+N];
fp[sccno[i+N]] = sccno[i];
}
}
return true;
}
int k = 1;
vector<int> G[MAXN];//缩点后新图
int in[MAXN];//记录SCC入度
void suodian()//缩点
{
for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0;
for(int i = 0; i < edgenum; i++)
{
int u = sccno[edge[i].from];
int v = sccno[edge[i].to];
if(u != v)
G[v].push_back(u), in[u]++;
}
}
int color[MAXN];//染色
void toposort()//拓扑染色
{
queue<int> Q;
memset(color, -1, sizeof(color));
for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(color[u] == -1)
{
color[u] = 1;
color[fp[u]] = 0;
}
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(--in[v] == 0)
Q.push(v);
}
}
}
void solve()
{
int State = (int)pow(3, K);//总状态数
bool flag = false;
for(int S = 0; S < State; S++)//这里状态下标从1开始或从2开始 都不会影响 注意取值就行了
{
memcpy(head, Rhead, sizeof(Rhead));//还原数组
memcpy(edge, Redge, sizeof(Redge));
edgenum = Redgenum;
int T = S;
for(int i = 0; i < K; i++)//继续枚举状态建图
{
int s;
switch(T % 3)//需要仔细琢磨 这个过程
{
case 0: s = num[i].x; break;
case 1: s = num[i].y; break;
case 2: s = num[i].z; break;
}
T /= 3;
if(num[i].op == 1)
addEdge(s + N, s);//s一定去
else
addEdge(s, s + N);//s一定不去
}
if(two_sat())//成立
{
flag = true;
break;
}
}
printf("Case %d: ", k++);
if(!flag)
{
printf("Impossible.\n");
return ;
}
printf("Possible");
//输出可行解
suodian();
toposort();
int ans = 0;
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
ans++;
}
printf(" %d", ans);
for(int i = 1; i <= N; i++)
if(color[sccno[i]] == 1)
printf(" %d", i);
printf(".\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d%d", &N, &M, &K);
init();
input();
solve();
}
return 0;
}

图论--2-SAT--Ligthoj 1407 Explosion 三元关系枚举的更多相关文章

  1. BZOJ.3498.[PA2009]Cakes(三元环 枚举)

    题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...

  2. ER 和 数据库关系模式

    http://lianghuanyue123.blog.163.com/blog/static/130423244201162011850600/ 我们眼下所接触的数据库基本上是关系数据库,关系数据库 ...

  3. 【WIP_S9】图论算法

    创建: 2018/06/01 图的概念 有向边 有向图 无向边 无向图 点的次数: 点连接的边的数量 闭路: 起点和重点一样 连接图: 任意两点之间都可到达 无闭路有向图: 没有闭路的有向图 森林: ...

  4. 什么是关系图 (ERD)?

    首先,什么是实体关系图? 实体关系图,也称为ERD,ER图或ER模型,是一种用于数据库设计的结构图.一个ERD包含不同的符号和连接器,它们可视化两个重要信息:系统范围内的主要实体,以及这些实体之间的相 ...

  5. 我所学的c语言

    c语言结构 #include <stdio.h> int main(){    /* 我的第一个 C 程序 */    printf("Hello, World! \n" ...

  6. lecture4-神经网络在语言上的应用

    Hinton第四课 这一课主要介绍神经网络在语言处理上应用,而主要是在文本上,并附上了2003年Bengio 等人的19页的论文<A Neural Probabilistic Language ...

  7. QQ 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件

    QQ 编辑 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件.腾讯QQ支持在线聊天.视频通话.点对点断点续传文件.共享文件.网络硬盘.自定义面板.QQ邮箱等多种功 ...

  8. bzoj1109

    我们设f[i]为保留第i个木块最多的符合未知数 显然f[i]=max(f[j])+1 满足i>j a[i]>a[j] i-j>=a[i]-a[j] 我们把最后一个式子变成a[i]-i ...

  9. DBA词典:数据库设计常用词汇中英文对照表

    1. Access method(访问方法):此步骤包括从文件中存储和检索记录. 2. Alias(别名):某属性的另一个名字.在SQL中,可以用别名替换表名. 3. Alternate keys(备 ...

随机推荐

  1. 在tap的碎片上与活动进行绑定实现点击事件(日期时间选择以及按钮跳转时间)

    主要是掌握怎样在Fragment类型的.java文件中实现对于文本框或者按钮点击事件的触发操作. 相应的出发时间都是之前的代码.主要是怎样在Fragment怎样实现相应的操作主要是对于getActiv ...

  2. MongoDB查询mgov2的聚合方法

    1.多条表数据累计相加. respCount := struct { Rebatescore int64 //变量命名必须要和查询的参数一样.}{} o := bson.M{"$match& ...

  3. java第十九天,Collections集合工具类的使用

    Collections Java中集合都实现了Collection接口,那么针对集合一些特定的功能,有没有一个接口或类能够统一的集成一些集合必要的功能呢?当然能.它就是--Collections集合工 ...

  4. "多行文本"组件:<multi> —— 快应用组件库H-UI

     <import name="multi" src="../Common/ui/h-ui/text/c_text_multi"></impo ...

  5. 邮件退信“Remote Server returned '420 4.2.0 Recipient deferred because there is no Mdb'”

    标题是一个近期遇到的NDR 对于Exchange运维工作者,NDR通常给了我们较为清晰的排错方向,我们先看一下退信的原因, 我的一台MailBox报错“远程服务器返回‘420 4.2.0’接受延迟,因 ...

  6. 通过STC15F2K60S2控制SIM900A发中英文短信,打电话

    本文通过串口通信,使用STC15系列单片机实现发短信打电话功能. 一. 注意事项 1. 首先要确定手机卡已经注册到网络,具备打电话发短信功能 2. 正确的硬件连接: P3.0-----STXD或者5V ...

  7. 21-Java-Hibernate框架(一)

    一.Hibernate了解 Hibernate框架是Java持久层的框架,是Gavin King发明的,2001年发布的,JBoss公司的产品,2003年进入市场. Hibernate是基于对象来操作 ...

  8. Python套接字之UDP

    目录 基于UDP的socket 发送消息 接收消息 基于UDP的socket 面向无连接的不可靠数据传输,可以没有服务器端,只不过没有服务器端,发送的数据会被直接丢弃,并不能到达服务器端 发送消息 在 ...

  9. Linux下安装Redis4.0版本(简便方法)

    Redis介绍: Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...

  10. C - Trailing Zeroes (III) 二分

    You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in d ...