codeforce 266c Below the Diagonal 矩阵变换 (思维题)
C. Below the Diagonal
You are given a square matrix consisting of n rows and n columns. We assume that the rows are numbered from 1 to n from top to bottom and the columns are numbered from 1 to n from left to right. Some cells (n - 1 cells in total) of the the matrix are filled with ones, the remaining cells are filled with zeros. We can apply the following operations to the matrix:
- Swap i-th and j-th rows of the matrix;
- Swap i-th and j-th columns of the matrix.
You are asked to transform the matrix into a special form using these operations. In that special form all the ones must be in the cells that lie below the main diagonal. Cell of the matrix, which is located on the intersection of the i-th row and of the j-th column, lies below the main diagonal if i > j.
Input
The first line contains an integer n (2 ≤ n ≤ 1000) — the number of rows and columns. Then follow n - 1 lines that contain one's positions, one per line. Each position is described by two integers xk, yk (1 ≤ xk, yk ≤ n), separated by a space. A pair (xk, yk) means that the cell, which is located on the intersection of the xk-th row and of the yk-th column, contains one.
It is guaranteed that all positions are distinct.
Output
Print the description of your actions. These actions should transform the matrix to the described special form.
In the first line you should print a non-negative integer m (m ≤ 105) — the number of actions. In each of the next m lines print three space-separated integers t, i, j (1 ≤ t ≤ 2, 1 ≤ i, j ≤ n, i ≠ j), where t = 1 if you want to swap rows, t = 2 if you want to swap columns, and i and jdenote the numbers of rows or columns respectively.
Please note, that you do not need to minimize the number of operations, but their number should not exceed 105. If there are several solutions, you may print any of them.
Examples
input
Copy
2
1 2
output
Copy
2
2 1 2
1 1 2
input
Copy
3
3 1
1 3
output
Copy
3
2 2 3
1 1 3
1 1 2
input
Copy
3
2 1
3 2
output
Copy
0
这个题就让上三角矩阵没有1,想找合适的行的位置,再找合适的列的位置,一步步缩小矩阵的范围,进而求解。
#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
//---------------------------------Sexy operation--------------------------//
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define debug(n) printf("%d_________________________________\n",n);
#define speed ios_base::sync_with_stdio(0)
#define file freopen("input.txt","r",stdin);freopen("output.txt","w",stdout)
//-------------------------------Actual option------------------------------//
#define Swap(a,b) a^=b^=a^=b
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define mp(a,b) make_pair(a,b)
#define pb(n) push_back(n)
//--------------------------------constant----------------------------------//
#define INF 0x3f3f3f3f
#define maxn 100005
#define esp 1e-9
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
//------------------------------Dividing Line--------------------------------//
int main()
{
speed;
int n,x[maxn],y[maxn],a[maxn],b[maxn],c[maxn],cnt=0;
cin>>n;
for(int i=1; i<n; ++i) cin>>x[i]>>y[i];
for(int i=1; i<n; ++i)
{
if(x[i]!=i+1)
{
for(int j=i+1; j<n; j++)
if(x[j]==i+1)
x[j]=x[i];
else if(x[j]==x[i])
x[j]=i+1;
a[cnt]=1,b[cnt]=x[i],c[cnt++]=i+1;
}
if(y[i]>i)
{
for(int j=i+1; j<n; j++)
if(y[j]==i) y[j]=y[i];
else if(y[j]==y[i]) y[j]=i;
a[cnt]=2,b[cnt]=y[i],c[cnt++]=i;
}
}
cout<<cnt<<endl;
for(int i=0; i<cnt; ++i) cout<<a[i]<<" "<<b[i]<<" "<<c[i]<<endl;
return 0;
}
codeforce 266c Below the Diagonal 矩阵变换 (思维题)的更多相关文章
- ACM思维题训练 Section A
题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...
- zoj 3778 Talented Chef(思维题)
题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...
- cf A. Inna and Pink Pony(思维题)
题目:http://codeforces.com/contest/374/problem/A 题意:求到达边界的最小步数.. 刚开始以为是 bfs,不过数据10^6太大了,肯定不是... 一个思维题, ...
- ZOJ 3829 贪心 思维题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 现场做这道题的时候,感觉是思维题.自己智商不够.不敢搞,想着队友智商 ...
- 洛谷P4643 [国家集训队]阿狸和桃子的游戏(思维题+贪心)
思维题,好题 把每条边的边权平分到这条边的两个顶点上,之后就是个sb贪心了 正确性证明: 如果一条边的两个顶点被一个人选了,一整条边的贡献就凑齐了 如果分别被两个人选了,一作差就抵消了,相当于谁都没有 ...
- C. Nice Garland Codeforces Round #535 (Div. 3) 思维题
C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记
PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...
- UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)
UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...
- HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)
HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...
随机推荐
- Linux学习,ACL权限管理
1.setfacl 得到指定文件的ACL权限 -m 表示后续有参数,不可与 -x参数配合使用 -x 删除后续的acl参数,不可与 -m 配合使用 -b 删除所 ...
- HAproxy shell脚本安装
#!/bin/bash #需要lua-..tar.gz在家目录下 # 编译安装lua #安装编译环境需要的包 yum -y install gcc openssl-devel pcre-devel s ...
- cmake添加版本号
vVersion.cmake文件内容如下: #vversion.cmake #vDateTime string(TIMESTAMP vDateTime "%Y%m%d-%H%M%S" ...
- Activity A 跳转到Activity B 生命周期
又被生命周期折磨了一段时间,这次是被onPause 和 onStop 折磨了,一直认为Activity A 跳转到到 Activity B的生命周期是onPause(A),onStop(A),onCr ...
- harbor仓库搭建
harbor安装要求 harbor快速部署 下载harbor:https://github.com/goharbor/harbor/releases 这边以harbor-1.8.2为例 [root@g ...
- Connections in Galaxy War ZOJ - 3261 (并查集)
点权并查集的反向离线操作 题目大意:有n个stars,每一个都一定的“颜值”.然后stars与stars之间可以相连,query c表示再与c相连的stars中,颜值比c高的,stars的标号,如果有 ...
- c++ find 函数与count函数
1 algorithml中的find,还有就是string中的find 对对于第一种其调用形式为 find(start,end,value) start搜寻的起点,end搜寻的终点,要寻找的value ...
- Epicor RoHS Overview
Epicor ERP具有一个旨在帮助符合指令2002/95/EC (RoHS1) and 2011/65/EU (RoHS2)的模块,特别适用于医疗设备公司. 不合格的依据是–最大浓度值和合格声明/ ...
- eclipse git 文件状态 及git分支的创建与合并与删除
eclipse里面Git文件状态及图标展示 EGit会出现如下图标,其对应状态及意义如下: 1)忽略[ ignored ]:仓库认为该文件不存在(如bin目录,不需要关注).通过右键Te ...
- Mysql中的一些类型
列类型--整数类型Tinyint:迷你整形 一个字节=8位 最大能表示的数值是0-255 实际区间 -128~127Smallint:小整形 两个字节 能表示0-65535Mediumint:中整型 ...