C. Below the Diagonal

You are given a square matrix consisting of n rows and n columns. We assume that the rows are numbered from 1 to n from top to bottom and the columns are numbered from 1 to n from left to right. Some cells (n - 1 cells in total) of the the matrix are filled with ones, the remaining cells are filled with zeros. We can apply the following operations to the matrix:

  1. Swap i-th and j-th rows of the matrix;
  2. Swap i-th and j-th columns of the matrix.

You are asked to transform the matrix into a special form using these operations. In that special form all the ones must be in the cells that lie below the main diagonal. Cell of the matrix, which is located on the intersection of the i-th row and of the j-th column, lies below the main diagonal if i > j.

Input

The first line contains an integer n (2 ≤ n ≤ 1000) — the number of rows and columns. Then follow n - 1 lines that contain one's positions, one per line. Each position is described by two integers xk, yk (1 ≤ xk, yk ≤ n), separated by a space. A pair (xk, yk) means that the cell, which is located on the intersection of the xk-th row and of the yk-th column, contains one.

It is guaranteed that all positions are distinct.

Output

Print the description of your actions. These actions should transform the matrix to the described special form.

In the first line you should print a non-negative integer m (m ≤ 105) — the number of actions. In each of the next m lines print three space-separated integers t, i, j (1 ≤ t ≤ 2, 1 ≤ i, j ≤ n, i ≠ j), where t = 1 if you want to swap rows, t = 2 if you want to swap columns, and i and jdenote the numbers of rows or columns respectively.

Please note, that you do not need to minimize the number of operations, but their number should not exceed 105. If there are several solutions, you may print any of them.

Examples

input

Copy

2
1 2

output

Copy

2
2 1 2
1 1 2

input

Copy

3
3 1
1 3

output

Copy

3
2 2 3
1 1 3
1 1 2

input

Copy

3
2 1
3 2

output

Copy

0

这个题就让上三角矩阵没有1,想找合适的行的位置,再找合适的列的位置,一步步缩小矩阵的范围,进而求解。


#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
//---------------------------------Sexy operation--------------------------// #define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define debug(n) printf("%d_________________________________\n",n);
#define speed ios_base::sync_with_stdio(0)
#define file freopen("input.txt","r",stdin);freopen("output.txt","w",stdout)
//-------------------------------Actual option------------------------------// #define Swap(a,b) a^=b^=a^=b
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define mp(a,b) make_pair(a,b)
#define pb(n) push_back(n)
//--------------------------------constant----------------------------------// #define INF 0x3f3f3f3f
#define maxn 100005
#define esp 1e-9
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
//------------------------------Dividing Line--------------------------------//
int main()
{
speed;
int n,x[maxn],y[maxn],a[maxn],b[maxn],c[maxn],cnt=0;
cin>>n;
for(int i=1; i<n; ++i) cin>>x[i]>>y[i];
for(int i=1; i<n; ++i)
{
if(x[i]!=i+1)
{
for(int j=i+1; j<n; j++)
if(x[j]==i+1)
x[j]=x[i];
else if(x[j]==x[i])
x[j]=i+1;
a[cnt]=1,b[cnt]=x[i],c[cnt++]=i+1;
}
if(y[i]>i)
{
for(int j=i+1; j<n; j++)
if(y[j]==i) y[j]=y[i];
else if(y[j]==y[i]) y[j]=i;
a[cnt]=2,b[cnt]=y[i],c[cnt++]=i;
}
}
cout<<cnt<<endl;
for(int i=0; i<cnt; ++i) cout<<a[i]<<" "<<b[i]<<" "<<c[i]<<endl;
return 0;
}

codeforce 266c Below the Diagonal 矩阵变换 (思维题)的更多相关文章

  1. ACM思维题训练 Section A

    题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...

  2. zoj 3778 Talented Chef(思维题)

    题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...

  3. cf A. Inna and Pink Pony(思维题)

    题目:http://codeforces.com/contest/374/problem/A 题意:求到达边界的最小步数.. 刚开始以为是 bfs,不过数据10^6太大了,肯定不是... 一个思维题, ...

  4. ZOJ 3829 贪心 思维题

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 现场做这道题的时候,感觉是思维题.自己智商不够.不敢搞,想着队友智商 ...

  5. 洛谷P4643 [国家集训队]阿狸和桃子的游戏(思维题+贪心)

    思维题,好题 把每条边的边权平分到这条边的两个顶点上,之后就是个sb贪心了 正确性证明: 如果一条边的两个顶点被一个人选了,一整条边的贡献就凑齐了 如果分别被两个人选了,一作差就抵消了,相当于谁都没有 ...

  6. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  7. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  8. UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

    UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...

  9. HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)

    HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...

随机推荐

  1. ssl & ike/ipsec

    SSL/TLS

  2. css3新的选择器

    CSS3新的选择器 ele[att^="val"] /*属性att的值以val开头的元素*/ ele[att$="val"] /*属性att的值以val结尾的元 ...

  3. C++静态库和动态库

    静态库与动态库 首先简单介绍一下gcc 指令 ubuntu 下安装gcc g++ 方法 sudo apt install gcc g++ gcc 的简单使用 建立hello.c 源文件 gcc hel ...

  4. String 对象-->substr() 方法

    1.定义和用法 substr() 方法可在字符串中抽取从 开始 下标开始的指定数目的字符. 语法: string.substr(start,length) 参数: start:提取开始下标 lengt ...

  5. MYSQ创建联合索引,字段的先后顺序,对查询的影响分析

    MYSQ创建联合索引,字段的先后顺序,对查询的影响分析 前言 最左匹配原则 为什么会有最左前缀呢? 联合索引的存储结构 联合索引字段的先后顺序 b+树可以存储的数据条数 总结 参考 MYSQ创建联合索 ...

  6. JPA入门例子(采用JPA的hibernate实现版本) --- 会伴随 配置文件:persistence.xml

    JPA入门例子(采用JPA的hibernate实现版本) 分类: j2se2011-03-30 16:09 45838人阅读 评论(9) 收藏 举报 jpahibernate数据库jdbcjava框架 ...

  7. Spring温习(1)--最基础的示例

    Spring温习(1)--最基础的示例 博客分类: 框架-Spring专栏 SpringXMLBeanWebDAO 从现在开始,我将从Spring为起点,逐步复习几大框架各方面的知识,以便今后查看使用 ...

  8. 002-IDE的使用与数据类型-C语言笔记

    002-IDE的使用与数据类型-C语言笔记 学习目标 1.[了解]IDE并熟悉Xcode基本使用技巧 2.[理解]C程序的入口和运行流程 3.[理解]变量的声明赋值和一些细节 4.[理解]变量的命名规 ...

  9. pandas basic cheatsheet

    "胖的要死"是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. 有多大?这篇 ...

  10. springboot集成swagger2多模块中文配置详细步骤,解决集成mybatis或mybatis-plus无法正常使用问题

    pom.xm里写入swagger依赖: <dependency> <groupId>io.springfox</groupId> <artifactId> ...