Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 21336    Accepted Submission(s): 7130

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.



Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).



Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).



But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.

具体解释见代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; #define maxn 1000002
#define minn -1*(1e9+7) int n, m;
int dp[maxn], b[maxn], val[maxn]; int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout); int i, j;
int res;
while (scanf("%d%d", &m, &n) != EOF)
{
for (i = 1; i <= n; i++)
{
scanf("%d", val + i);
}
memset(dp, 0, sizeof(dp));
memset(b, 0, sizeof(b)); //dp[i][j]表示i个数分为j组且在选取了第i个数的前提下的最大值
//dp[i][j]=max(dp[i-1][j]+a[j],max(dp[0][j-1]~dp[i-1][j-1])+a[j])
//dp[x]表示第i轮的dp[x][i],即表示x个数时分成i个组的最大值
//b[x]表示上一轮所有的最大值,即第j轮时,b[x]=max(dp[0][j-1]~dp[x-1][j-1])
for (j = 1; j <= m; j++)
{
res = minn;
for (i = j; i <= n; i++)
{
//表示dp[j][i]只有两种可能来源,一个是dp[j-1][i]+val[j],一个是max(dp[0][j-1]~dp[i-1][j-1])+a[j]
dp[i] = max(dp[i - 1] + val[i], b[i - 1] + val[i]);
b[i - 1] = res;
res = max(res, dp[i]);
}
}
printf("%d\n", res);
}
//system("pause");
return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 1024:Max Sum Plus Plus 经典动态规划之最大M子段和的更多相关文章

  1. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  4. HDU 1024 Max Sum Plus Plus【DP,最大m子段和】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意: 给定序列,给定m,求m个子段的最大和. 分析: 设dp[i][j]为以第j个元素结尾的 ...

  5. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  6. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  7. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  8. hdu 1024 Max Sum Plus Plus (动态规划)

    Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

随机推荐

  1. 分布式应用监控:SkyWalking 快速接入实践

    分布式应用,会存在各种问题.而要解决这些难题,除了要应用自己做一些监控埋点外,还应该有一些外围的系统进行主动探测,主动发现. APM工具就是干这活的,SkyWalking 是国人开源的一款优秀的APM ...

  2. Python回收机制

    1.小整数对象池 整数在程序中的使用非常广泛,python 为了优化速度,使用了小整数对象池,避免整数频繁申请和销毁和内存空间. Python 对小整数的定义事[-5, 257]这些整数对象的hi提前 ...

  3. python面试题手动总结答案锦集

    数据类型 字符串 1.列举python中的基本数据类型 数字:int 布尔值:bool 字符串:str 列表:list 元组:tuple 字典:dict 集合:set 然后我们需要了解一些运算符,应为 ...

  4. XPath简介

    参考视频:   https://www.bilibili.com/video/av49809274/?p=22 一,什么是XPATH? xpath(xml path language)是一门在xml和 ...

  5. IDEA中使用Lombok插件简化实体类的编写

    版本:IDEA Community 2019.2.2 流程:安装lombok插件并安装,重启=>在pom文件中加入 <dependency> <groupId>org.p ...

  6. Linux命令:ss命令

    ss功能:用来显示套接字信息的,类似于netstat,可以显示更多的信息,用于替代netstat. ss常用选项 ss -t:tcp协议的连接 -u:udp协议的链接 -w:裸套接字相关 -x:uni ...

  7. LPS(最长回文子序列)

    (注意:我发现最长回文子序列(Longest Palindromic Subsequence)问题与最长回文子串(Longest Palindromic Substring)不一样,子序列不要求下标一 ...

  8. prototype入门----自定义创建元素

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. Idea牛逼插件,拿走不谢

    1.grep console java 开发的过程中,日志都会输出到console,输出的内容是非常多的,所以需要有一个工具可以方便的查找日志,或者可以非常明显显示我们关注的内容,grep conso ...

  10. 对简易网页版注册系统的制作(连接MySQL数据库)

    一.基本需求 二.设计思路: 1.首先创建一个与数据库数据属性对应的类User,并添加get和set方法. 2.之后建立另一个类UserDao用于生成一条完整的数据对象. 3.再建立一个类DButil ...