Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: an hypothetical non-machine learning algorithm for face recognition in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but will "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

This particular example of face recognition is supervised, which means that your examples must belabeled, or explicitly say which ones are faces and which ones aren't.

In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course in such a case the algorithm itself cannot "invent" what a face is, but it could be able to cluster the data in different class, e.g. it could be able to distinguish that faces are very different from panoramas, which are very different from horses.

Since another answer mention it (in an incorrect way), there are "intermediate" form of supervision, i.e.semi-supervised and active learning techniques. Technically, these are supervised methods, in which there is some "smart" way to avoid the large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a panorama and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised approach, there are two different algorithms, which start with the labeled examples, and then "tell" each other way they think about some large number of unlabeled data. From this "discussion" they learn.

What is the difference between supervised learning and unsupervised learning?的更多相关文章

  1. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  7. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

随机推荐

  1. Java 字符流实现文件读写操作(FileReader-FileWriter)

    Java 字符流实现文件读写操作(FileReader-FileWriter) 备注:字符流效率高,但是没有字节流底层 字节流地址:http://pengyan5945.iteye.com/blog/ ...

  2. 非常难得的iPad版房地产售楼助手应用

    一款高质量的iPad房地产售楼助手应用,采用的是类似facebook,新浪微博,腾讯微博,人人网的布局视图.功能有:客户管理系统(可添加,编辑等):2.房源管理系统;3.房贷计算器等,这个应用无论是布 ...

  3. 如何解决win7系统访问共享服务器慢的问题

    最近重新装了win7系统,但发现当访问共享服务器的时候很慢,后来在网上搜索了相关解决办法,在此和大家分享下: 1. 通过“windows键”+“R键”快捷打开“运行”窗口,然后输入cmd命令敲回车,进 ...

  4. <linux下sysctl指令详解>

    Sysctl指令是对系统核心参数的设置: 用法: -a 参数列出系统中所有核心设置 当然了这些核心的设置都是文件,存放于/proc/sys/net目录下. 举个有代表性的例子: net.ipv4.ic ...

  5. iOS相机操作笔记

    最近忙于项目,需要拍摄图片,这里先列出部分测试代码. // // FirstViewController.m // UiTest // // Created by Tang Huaming on 16 ...

  6. jQuery对input中radio的一些操作

    通过jQuery获取页面中的所有radio对象,遍历页面中的radio,取消选中的标签,因为使用到jQuery时间,因此引用到了网上公共的js,这只是本人的一些总结,大神勿喷. <html> ...

  7. 了解jsonp

    <script>                //创建全局函数,用来处理 跨域 获取到的信息:        function name(data){            ....   ...

  8. Git命令收集【不断更新中】

    git stash 可以用来保存暂时不想提交但又被修改过的文件. git stash pop 用来取出被保存在stash栈中的修改过的所有文件. git stash show 查询哪些文件被存放在了s ...

  9. Delphi 两个应用程序(进程)之间的通信

    两个应用程序之间的通信实际上是两个进程之间的通信.由于本人知识有限,决定应用消息来实现.需要用到的知识: 1.RegisterWindowMessage(); //参数类型:pchar:返回值:Lon ...

  10. Java从入门到精通——数据库篇之JAVA中的对Oracle数据库操作

    在Java中对Oracle数据库的操作分为两种:一.查询.二.非查询. 下面是我对其进行总结: 一.查询数据 /** * 根据用户代码查询 * @param userId * @return 如果存在 ...