Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: an hypothetical non-machine learning algorithm for face recognition in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but will "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

This particular example of face recognition is supervised, which means that your examples must belabeled, or explicitly say which ones are faces and which ones aren't.

In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course in such a case the algorithm itself cannot "invent" what a face is, but it could be able to cluster the data in different class, e.g. it could be able to distinguish that faces are very different from panoramas, which are very different from horses.

Since another answer mention it (in an incorrect way), there are "intermediate" form of supervision, i.e.semi-supervised and active learning techniques. Technically, these are supervised methods, in which there is some "smart" way to avoid the large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a panorama and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised approach, there are two different algorithms, which start with the labeled examples, and then "tell" each other way they think about some large number of unlabeled data. From this "discussion" they learn.

What is the difference between supervised learning and unsupervised learning?的更多相关文章

  1. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  7. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

随机推荐

  1. Codevs 2611 观光旅游

     时间限制: 1 s 空间限制: 128000 KB 题目等级:钻石   题目描述 Description 某旅游区里面有N个景点.两个景点之间可能直接有道路相连,用a[i][j]表示它的长度,否则它 ...

  2. F. Igor and Interesting Numbers

    http://codeforces.com/contest/747/problem/F cf #387 div2 problem f 非常好的一道题.看完题,然后就不知道怎么做,感觉是dp,但是不知道 ...

  3. 用Windows API函数(CreateFile/ReadFile/WriteFile/CloseHandle)完成文件拷贝程序(初级版)

    文件拷贝程序 程序类型:Console 参数:源文件名   目的文件名 要求:1.只能使用Windows API函数(CreateFile/ReadFile/WriteFile/CloseHandle ...

  4. 简单的jQuery获取URL的?后带的参数

    var con_name = getQueryString("con_name"); //接收con_name        function getQueryString(val ...

  5. Turn.js 实现翻书效果的学习与总结

    最近CTO给我分配了一个移动端H5开发的任务,主要功能是需要实现翻书效果,我听过主要需求后,当时是呀!!!接下来自己尝试使用fullPage.js和Swiper来实现翻书效果,结果效果都不是非常的理想 ...

  6. ASP.ENT Core Linux 下 为 donet创建守护进程(转载)

    原文地址:http://www.cnblogs.com/savorboard/p/dotnetcore-supervisor.html 前言 在上篇文章中介绍了如何在 Docker 容器中部署我们的 ...

  7. [大牛翻译系列]Hadoop(9)MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈

    6.2 诊断性能瓶颈 有的时候作业的执行时间会长得惊人.想靠猜也是很难猜对问题在哪.这一章中将介绍如何界定问题,找到根源.涉及的工具中有的是Hadoop自带的,有的是本书提供的. 系统监控和Hadoo ...

  8. Mac OS + Nginx + Mysql + PHP 本地环境搭建

    本文是用Mac系统下搭建的环境,使用Linux的童鞋也不要在意,因为很相似,只有下载安装的方式有一点区别.直接进入正文: 1.首先我们需要下载Homebrew,Homebrew简称brew,是Mac ...

  9. GITHUB基础使用教程

    windows系统下:   1.安装完成后,还需要最后一步设置,在命令行输入: $ git config --global user.name "Your Name" $ git ...

  10. Super Object Toolkit (支持排序)

    (* * Super Object Toolkit * * Usage allowed under the restrictions of the Lesser GNU General Public ...