Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: an hypothetical non-machine learning algorithm for face recognition in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but will "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

This particular example of face recognition is supervised, which means that your examples must belabeled, or explicitly say which ones are faces and which ones aren't.

In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course in such a case the algorithm itself cannot "invent" what a face is, but it could be able to cluster the data in different class, e.g. it could be able to distinguish that faces are very different from panoramas, which are very different from horses.

Since another answer mention it (in an incorrect way), there are "intermediate" form of supervision, i.e.semi-supervised and active learning techniques. Technically, these are supervised methods, in which there is some "smart" way to avoid the large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a panorama and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised approach, there are two different algorithms, which start with the labeled examples, and then "tell" each other way they think about some large number of unlabeled data. From this "discussion" they learn.

What is the difference between supervised learning and unsupervised learning?的更多相关文章

  1. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  7. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

随机推荐

  1. 7款震撼人心的HTML5文字特效

    1.CSS3五彩文字特效 文字带阴影效果 这是一款非常具有卡通形象的CSS3五彩文字特效,虽然没有迷人的动画效果,但是五彩缤纷的文字展现在屏幕上也是非常酷的,再加上每一个文字都有不同角度的阴影效果,加 ...

  2. 安装MySQL软件

    安装MySQL软件(绿色版) ① 解压软件包 ② 更改文件夹名称为mysql并复制到/usr/local文件夹下 ③ 使用cd指令进入/usr/local/mysql文件夹,使用ls –l查看 查看后 ...

  3. VC按钮控件实现指示灯效果

    VC为按钮控件添加图片的方法有很多种: 直接调用SetBitmap:  CButton pButton->SetBitmap(hBitmap); 使用CButtonST控件: 使用CDC: 使用 ...

  4. SSH 正向/反向代理小记

    上周因为玩耍Minecraft的原因,折腾了下ssh的正向.反向代理,不得不说,科技改变命运..了解了基础的用法之后,很多跨域的事情都可以通过代理解决,而且只需要ssh帐号权限即可. 那么就简单来介绍 ...

  5. 《Linux下sed命令的使用》

    grep -v 关键字  文件  文件中的关键字给过滤掉 grep -v “^关键字”  文件  以关键字开头的给过滤掉 sed -e ‘/关键字/d’文件   输出时把关键字给删除掉   以/etc ...

  6. ARM公布“物联网”嵌入式mbed OS系统软件平台

    继ARM公司发布了为嵌入式微控制器设计的Cortex-M7架构处理器,ARM又公布了专为廉价低功耗“物联网”设计的新版软件及系统平台,以加速物联网设备的发展及部署.该软件为基于ARM现有Cortex- ...

  7. 图片剪裁上传插件 - cropper

    图片剪裁上传插件 - cropper <style> .photo-container{float: left;width: 300px;height: 300px;} .photo-co ...

  8. c#多层嵌套Json

    Newtonsoft.Json.Net20.dll 下载请访问http://files.cnblogs.com/hualei/Newtonsoft.Json.Net20.rar 在.net 2.0中提 ...

  9. 基于CSS3新属性Animation及transform实现类似翻书效果

    注:本实例JS部分均以原生JS编写,不善用原生JS的,可用jQuery等对三方框架改写 先上效果图:(样式有点丑,可以忽略一下下,效果出来了就好,后期加到其他项目中方便更改0.0) 类似翻书效果,原本 ...

  10. extjs的combobox的用法

    可以用javascript的数组作为数据源,也可以用json作为数据源: 1.用javascript数组 var CountryCode = [ ['93','Afghanistan(93)'], [ ...