题意:给一个有向图,要求找出一些点,使得这些点中的任意点对,要么可以互通,要么单向可达。

思路:最低只要求单向可达即可,即a->b都可以算进去。

  强连通分量内的点肯定是满足要求的,可以全选,但是有多个强连通分量时就不行了,得有取舍。老方法,先缩点,缩完点后是没有环的存在的,所以就是拓扑图了。如果只给一个拓扑图,要求找一条链使得链上的点最多,那么可以用判断拓扑的方式,逐个将入度为0的点删除,且在删除的时候记录下最多有多少个点,删到最后一个点时就出结果了。这样的方法同样适用,只是每个点可能是缩点,而且要将这些缩点内的点数算上去而已。

实现:

  (1)求强连通分量。

  (2)统计缩点的度数并建(缩点)图。

  (3)按判断拓扑图的方式来进行点数的统计。

 #include <bits/stdc++.h>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
vector<int> vect[N], g[N]; //原图,缩点后的图
int n, m;
int dfn[N], lowlink[N], scc_no[N], dfn_clock, scc_cnt; //强连通分量必备
stack<int> stac; //强联通分量用栈
unordered_map<int,int> chu[N],ru[N]; //仅仅为了防止重复统计
int r[N]; //出入度
int num[N]; //强联通分量中的点数
int dp[N]; //答案 void DFS(int x)
{
stac.push(x);
dfn[x]=lowlink[x]=++dfn_clock;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
DFS(t);
lowlink[x]=min(lowlink[x],lowlink[t]);
}
else if(!scc_no[t]) lowlink[x]=min(lowlink[x], dfn[t]);
}
if(lowlink[x]==dfn[x])
{
++scc_cnt;
while(true)
{
int t=stac.top();stac.pop();
scc_no[t]=scc_cnt;
if(t==x) break;
}
}
} int cal()
{
memset(dfn,,sizeof(dfn));
memset(lowlink,,sizeof(lowlink));
memset(scc_no,,sizeof(scc_no));
dfn_clock=scc_cnt=;
for(int i=; i<=n; i++) if(!dfn[i]) DFS(i); if(scc_cnt==) return n;
for(int i=; i<=scc_cnt; i++) g[i].clear(),chu[i].clear(),ru[i].clear();
for(int i=; i<=n; i++) //统计度,建图
{
for(int j=; j<vect[i].size(); j++)
{
int t=vect[i][j];
if(scc_no[i]!=scc_no[t])
{
if(!chu[scc_no[i]][scc_no[t]]) //还没出现过
{
chu[scc_no[i]][scc_no[t]]=;
g[scc_no[i]].push_back(scc_no[t]);
}
ru[scc_no[t]][scc_no[i]]=;
}
}
}
deque<int> que;
memset(r,,sizeof(r));
for(int i=; i<=scc_cnt; i++) //统计出入度
{
r[i]=ru[i].size();
if(!r[i]) que.push_back(i);
} memset(num,,sizeof(num));
for(int i=; i<=n; i++) num[scc_no[i]]++; //统计点数 memset(dp,,sizeof(dp)); //按拓扑序来dp
int ans=;
while(!que.empty())
{
int siz=que.size();
for(int i=; i<siz; i++) //所有入度为0的节点
{
int t=que.front();que.pop_front();
ans=max(ans,dp[t]+num[t]);
for(int j=; j<g[t].size(); j++) //每条以t出发的边
{
int d=g[t][j];
r[d]--;
if(!r[d]) que.push_back(d);
dp[d]=max(dp[d],dp[t]+num[t]);
}
}
}
return ans;
} int main()
{
//freopen("input.txt", "r", stdin); int t, a, b;
cin>>t;
while(t--)
{
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) vect[i].clear();
for(int i=; i<m; i++)
{
scanf("%d%d",&a,&b);
vect[a].push_back(b);
}
cout<<cal()<<endl;
}
return ;
}

AC代码

UVA 1324 The Largest Clique 最大团(强连通分量,变形)的更多相关文章

  1. Uva--11324--The Largest Clique【有向图强连通分量】

    链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...

  2. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  3. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  4. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  5. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  6. UVa 11324 The Largest Clique (强连通分量+DP)

    题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...

  7. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  8. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  9. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

随机推荐

  1. PAT乙级真题1005. 继续(3n+1)猜想 (25)(解题)

    原题: 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证 ...

  2. Android “NetworkOnMainThreadException”出错原因及解决办法

    原因: 不允许在主线程中通讯 方法1:非要在主线程中,当然也可以,这样去处理: StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Build ...

  3. W25Q32的使用

    一.W25Q32简介 W25Q32是华邦公司推出的大容量“SPI  FLASH” 产品. 1.容量 32M-Bit/4M-byte(4,194,304) 2.存储结构 页:256-bytes 扇区:4 ...

  4. 【学习总结】【多线程】 线程 & 进程 & NSThread(多线程的一套API)

    一.进程和线程 1.什么是进程 进程是指在系统中正在运行的一个应用程序 每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内 比如同时打开 Chrome.Xcode,系统就会分别启动2个进 ...

  5. HttpClient抓取网页内容简单介绍

    版本HttpClient3.1 1.GET方式 第一步.创建一个客户端,类似于你用浏览器打开一个网页 HttpClient httpClient = new HttpClient(); 第二步.创建一 ...

  6. Code for the Homework2 改进

    1. 实现了到指定点各个关节的转角计算(多解性),并且所求解满足各个关节的最大角和最小角的限制条件. 2. 对方向向量进行了单位化,保证任意大小的向量都行 #include<iostream&g ...

  7. jquery mobile validation

    <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...

  8. HDU4545+LCS

    最长公共子序列. /* LCS 最长公共子序列 */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  9. (转)eclipse快捷键

    Eclipse常用快捷键 Eclipse的编辑功能非常强大,掌握了Eclipse快捷键功能,能够大大提高开发效率.Eclipse中有如下一些和编辑相关的快捷键. 1. [ALT+/] 此快捷键为用户编 ...

  10. HDU 5039 Hilarity

    题意:一棵树n个结点,每条边有0.1两种权值,每次询问权值为奇数的路径数目,或者改变某一条边的权值. 分析:这个题目很巧妙低利用了异或和的特性,dfs得到每个点到根结点的权值异或和,然后奇数则为1,偶 ...