[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?
Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 安装Nuget上常用的包的命令
起因: Nuget图形化操作界面各种卡顿,或者有时干脆就连不上了.所以用命令还是很必须的. 常用命令: 安装 Entity Framework : PM> Install-Package Ent ...
- EXTJS 4.2 资料 跨域的问题
关于跨域,在项目开发中难免会遇到:之前笔者是用EXTJS3.0开发项目的,在开发过程中遇到了关于跨域的问题,但是在网上找到资料大部分都是ExtJs4.0以上版本的 在ExtJs中 例如:Ext.Aja ...
- linux学习笔记(1)-文件处理相关命令
列出文件和目录 ls (list) #ls 在终端里键入ls,并回车,就会列出当前目录的文件和目录,但是不包括隐藏文件和目录 #ls -a 列出当前目录的所有文件 #ls -al 列出当前目的所有文件 ...
- 读书笔记 (一) ———Fundamentals of Multiagent Systems with NetLogo Examples by Prof. Jose M Vidal
在网上发现Prof. Jose M Vidal用NetLogo仿真Multi-agent system的视频,随后下载他的著作Fundamentals of Multiagent Systems wi ...
- jQuery.serializeArray() 函数详解
serializeArray()函数用于序列化一组表单元素,将表单内容编码为一个JavaScript数组. serializeArray()函数常用于将表单内容序列化为JSON对象,以便于被编码为JS ...
- Deadline来了,如何按时结题?
- Redis-PHP-Hash 表相关API
Hashes 相关 ================================ hDel - 删除一个哈希 key hExists - 检查哈希 key是否存在 hGet - 获得某哈希 key ...
- 【无聊放个模板系列】BZOJ 3172 (AC自动机)
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...
- spring 异常管理机制
三.异常处理的几种实现: 3.1.在经典的三层架构模型中,通常都是这样来进行异常处理的: A.持久层一般抛出的是RuntiomeException类型的异常,一般不处理,直接向上抛出. B.业务层一般 ...
- 单独下载的Qt library则一般不带SSL(包括QT FAQ)
http://www.cnblogs.com/E7868A/archive/2012/11/15/2771501.html http://www.oldcai.com/archives/208 htt ...