Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?

Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. GUIText的淡入淡出

    单击按键“A”(随意改变),可以控制GUIText马上显示出来,然后淡出:按住按键“A”,可以使GUIText淡入,如果抬起按键则淡出. FadeInOut.cs using UnityEngine; ...

  2. C# - Generic

    定义泛型类 创建泛型类,在类定义中包含尖括号语法 class MyGenericClass<T> { ... } T可以是任意标识符,只要遵循通常的C#命名规则即可.泛型类可以在其定义中包 ...

  3. WinForm 换行问题 textbox (转)

    WinForm 换行问题 textbox 今天碰到一段string在label中能正常换行,但是在textbox中却无法换行的问题. 首先考虑是换行符的问题.在网上查了些资料: 1.TextBox 中 ...

  4. $.post()返回数据正常,但不执行success回调函数

    今天遇到一特郁闷的问题,如题:$.post()返回数据正常,但不执行success回调函数.说它郁闷是因为没毕业之前就遇到过解决了,却没有记录下来,导致卡了一下午. 像这样,post返回数据正常,但却 ...

  5. python字符串截取与替换的例子

    python字符串截取与替换的多种方法 时间:2016-03-12 20:08:14来源:网络 导读:python字符串截取与替换的多种方法,以冒号分隔的字符串的截取方法,python字符串替换方法, ...

  6. 如何编写敏捷开发中的user story

    http://blog.csdn.net/chengyb74/article/details/4762247 对于敏捷开发来说,User Story是开发的基础,它不同于传统的瀑布式开发方式,而是把原 ...

  7. [BEC][hujiang] Lesson02 Unit1:Working life ---Reading

    2 1.1Working Life p7 reading attitudes to work Question6: 对于Attitude问题 1 I be willing/ unwilling to ...

  8. 如何通过 OAuth 2.0 使 iOS Apps 集成 LinkedIn 登录功能?

    社交网络早已成为人们日常生活的一部分.其实,社交网络也是编程生活的一部分,大多数 App 必须通过某种方式与社交网络交互,传送或接收与用户相关的数据.大多数情况下,用户需要登录某种社交网络,授权 Ap ...

  9. 如何助力企业 APP 在竞争中占据先机?

    做好产品的六字真言:刚需.痛点.高频 --周鸿祎 好的产品是需要不断打磨的.在开发任何产品之前,都需要进行严格的假设和调研,找到刚需,找到痛点.然后就是不断的验证自己的假设,不断地在适当的试错过程中成 ...

  10. Flask, Tornado, GEvent, 以及它们的结合的性能比较

    Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...