[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?
Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- mysql group by优化
mysql> explain select actor.first_name,actor.last_name,count(*) from sakila.film_actor inner join ...
- easy ui 下拉级联效果 ,下拉框绑定数据select控件
html代码: ①两个下拉框,一个是省,另一个市 <tr> <td>省:</td> <td> <select id="ProvinceI ...
- Webx常用接口
最近在学Webx框架, 在了解webx的工作流程后, 必须要会使用自带的接口和类 常用的 Navigator 这个接口中只有两种类型的方法, 及重定向与转发, 一般用在screen包下的类(注意:s ...
- ashx与验证码
using System; using System.Drawing; using System.Drawing.Imaging; using System.Drawing.Drawing2D; us ...
- 3.9 spring-自定义标签解析
到这里,我们已经完成了分析默认标签的解析与提取过程,或许设计的内容太多,我们忘了我们是冲哪个函数开始了的, 让我们再次回顾一下默认标签解析方法的起始方法. 入口如下: /** * Parse the ...
- [转载]Dotfuscator Professional Edition 4.9.7500.9484 混淆工具破解版+使用教程
如有转载,请注明出处: http://www.cnblogs.com/flydoos/archive/2012/01/26/2329536.html Dotfuscator Professional ...
- [转载]jquery获取元素索引值index()方法:
jquery的index()方法 搜索匹配的元素,并返回相应元素的索引值,从0开始计数. 如果不给 .index() 方法传递参数,那么返回值就是这个jQuery对象集合中第一个元素相对于其同辈元素的 ...
- Unity3D开发之NGUI结合粒子系统的遮挡问题
原地址:http://blog.csdn.net/lihandsome/article/details/22194025 我的是NGUI3.0.3版本,在加入粒子系统的时候发现一直都是在精灵的下面,所 ...
- 找出程序cpu使用率高的原因
确定是CPU过高 使用top观察是否存在CPU使用率过高现象 找出线程 对CPU使用率过高的进程的所有线程进行排序 ps H -e -o pid,tid,pcpu,cmd --sort=pcpu |g ...
- Howto: Deploy VC2008 apps without installing vcredist_x86.exe
There are several reasons for xcopy deployment of an application (also known as application local). ...