【BZOJ 2242】[SDOI2011]计算器
Description
Input
输入包含多组数据。
Output
Sample Input
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。
Sample Output
2
1
2
【样例输出2】
2
1
0
#include<cstdio>
#define ll long long
#include<map>
#include<cmath>
using namespace std;
int T,k;
ll pow(ll x,int y,int p){
ll ans=;
while(y>){
if (y&==) ans=(ans*x)%p;
y=y>>;
x=(x*x)%p;
}
return ans;
} int gcd(int x,int y){
if (x%y==) return y;
return gcd(y,x%y);
} void exgcd(int a,int b,int &x,int &y){
if (b==){x=,y=;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-(a/b)*y;
} void solve2(int a,int z,int b){
int tmp=gcd(a,b),x,y;
if (z%tmp){printf("Orz, I cannot find x!\n");return;}
exgcd(a,b,x,y);
x=((ll)x*(z/tmp))%b;
while (x>) x-=b/tmp;
while (x<) x+=b/tmp;
printf("%d\n",x);
} map<int,int> mp;
void solve3(int y,int z,int p){
y%=p;
if (!y&&!z) {printf("1\n");return;}
if (!y){printf("Orz, I cannot find x!\n");return;}
mp.clear();
ll m=ceil(sqrt(p)),t=;
mp[]=m+;//y^0==1;
for (int i=;i<m;i++){
t=t*y%p;
if (!mp[t]) mp[t]=i;
}
ll tmp=pow(y,p--m,p),ine=;
for (int k=;k<m;k++){
int i=mp[z*ine%p];
if (i){
if (i==m+)i=;
printf("%d\n",k*m+i);
return;
}
ine=ine*tmp%p;
}
printf("Orz, I cannot find x!\n");
} int main(){
scanf("%d%d",&T,&k);
while (T--){
int y,z,p;
scanf("%d%d%d",&y,&z,&p);
if (k==) printf("%lld\n",pow(y,z,p));
if (k==) solve2(y,z,p);
if (k==) solve3(y,z,p);
}
}
【BZOJ 2242】[SDOI2011]计算器的更多相关文章
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- bzoj 2242 [SDOI2011]计算器(数论知识)
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...
- bzoj 2242 [SDOI2011]计算器——BSGS模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...
- BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
- bzoj 2242: [SDOI2011]计算器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
- [原博客] BZOJ 2242 [SDOI2011] 计算器
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...
随机推荐
- [转]网站优化-IIS7下静态文件的优化
本文转自:http://www.cnblogs.com/Leung/archive/2009/10/26/1590256.html 在网站开发过程中,通常我们会对网站的静态文件做处事,像图片文件,CS ...
- poj 2823 单调队列
思路:裸的单调队列. #include<iostream> #include<cstring> #include<cstdio> #include<algor ...
- Web前端学习笔记2
一.开发工具sublime的常用快捷键. 1. 快捷键 功能 ctrl+shift+D 快速复制 ctrl+L 快 ...
- 海量小文件存储与Ceph实践
海量小文件存储(简称LOSF,lots of small files)出现后,就一直是业界的难题,众多博文(如[1])对此问题进行了阐述与分析,许多互联网公司也针对自己的具体场景研发了自己的存储方案( ...
- VS2012生成不依赖运行时不依赖MFC的MFC程序
转载请注明来源:http://www.cnblogs.com/xuesongshu/ 1.新建MFC或者Win32工程,全部使用默认设置 2.设置工程属性,展开配置属性,转到:常规~MFC的使用,修改 ...
- JqGrid 使用方法详解
JQGrid JQGrid是一个在jquery基础上做的一个表格控件,以ajax的方式和服务器端通信. JQGrid Demo 是一个在线的演示项目.在这里,可以知道jqgrid可以做什么事情. 下面 ...
- Python Quick Start
1.安装Python 官网下载python: https://www.python.org/ 有2.x 3.x版本, 注意,python3.0不向下兼容2.x版本,有很多包3.0不提供 下载完后直接点 ...
- 第十篇、Swift -- WebSocket
每当小编再开发中遇到了困难,在网上搜,简直是垃圾堆里找金子.国内网站真的全不可靠,最后FQ去国外网站寻找,才可以找到.找到了写websocket文章,同时找到了集成的框架文件,一个叫Starscrea ...
- Objective-c中的对象间的消息传递以及消息路由
刚开始使用Objective-C时,总是习惯将对象间发送消息之间称呼为方法调用.心想,这和c#不是一回事吗?不就是调用实例方法吗,还搞个消息发送作甚,最后还不是要转化为方法的调用?通过一段时间的理解学 ...
- 【整理】c# 调用windows API(user32.dll)
User32.dll提供了很多可供调用的接口,大致如下(转自http://blog.csdn.net/zhang399401/article/details/6978803) using System ...