BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)
设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和。矩乘一发即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 33
#define M 110
#define P 2017
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,k;
struct matrix
{
int n,a[N][N];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<b.n;j++)
for (int k=;k<b.n;k++)
c.a[i][j]=(c.a[i][j]+a[i][k]*b.a[k][j])%P;
return c;
}
}f,v;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4887.in","r",stdin);
freopen("bzoj4887.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
v.n=n+;
for (int i=;i<=m;i++)
{
int x=read(),y=read();
v.a[x][y]=v.a[y][x]=;
}
for (int i=;i<=n;i++) v.a[i][i]=v.a[i][]=;
k=read()+;
f.n=;f.a[][]=;
for (;k;k>>=,v=v*v) if (k&) f=f*v;
cout<<f.a[][];
return ;
}
BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)的更多相关文章
- [BZOJ4887][TJOI2017]可乐(DP+矩阵快速幂)
题目描述 加里敦星球的人们特别喜欢喝可乐.因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上.这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆.它每一秒都会随机 ...
- 【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)
[BZOJ4887][TJOI2017]可乐(矩阵快速幂) 题面 BZOJ 洛谷 题解 模板题??? #include<iostream> #include<cstdio> # ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)
题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)
显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...
- 洛谷P3758/BZOJ4887 [TJOI2017] 可乐 [矩阵快速幂]
洛谷传送门,BZOJ传送门 可乐 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 299 Solved: 207 Description 加里敦星球的人 ...
- Luogu 3758 [TJOI2017]可乐(有向图邻接矩阵幂的意义 矩阵快速幂)
题目描述 加里敦星球的人们特别喜欢喝可乐.因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上.这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆.它每一秒都会随机 ...
随机推荐
- SaltStack入门篇(一)之SaltStack部署
一.SaltStack概述 Salt,,一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, ...
- EF中一对多的自反关系设置
对于一般的目录树,通常就是一对多的自反关系,一般会有一个PID,引用于这个ID,实体类代码类似于下: public partial class Catalog { public Cat ...
- JS基础,相亲,逻辑训练
简单逻辑 <script> var a = prompt("有房么?"); // if(a == "有") { alert("结婚吧&qu ...
- 函数parseQuery用于解析url查询参数
在百度上找的,以后忘了再看. 语法如下: var obj = parseQuery(query) query是被解析的查询参数,函数返回解析后的对象. 使用范例如下: var jerry = pars ...
- 自动化运维工具saltstack02 -- 之SaltStack的配置管理
SaltStack的配置管理 1.配置管理说明 配置管理,顾名思义及配置与管理, salt-master的配置文件编写格式之YAML语法说明: 数据的结构通过缩进来表示,每一级用两个空格来表示缩进,如 ...
- 【RL系列】马尔可夫决策过程——Gambler's Problem
Gambler's Problem,即“赌徒问题”,是一个经典的动态编程里值迭代应用的问题. 在一个掷硬币游戏中,赌徒先下注,如果硬币为正面,赌徒赢回双倍,若是反面,则输掉赌注.赌徒给自己定了一个目标 ...
- 【win10系统问题】远程桌面登录一次后,第二次登录看不到用户名和密码输入框
[win10系统远程桌面登录问题] 远程桌面登录某服务器一次后,第二次登录看不到用户名和密码输入框 [解决方法] 在注册表里找到该路径下的远程服务器ip,删除即可: HKEY_CURRENT_USER ...
- 2017软工第十周个人PSP
11.17--11.23本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) ...
- short数组写进txt
short[] ssss=new short[gaoDeData.Length]; FileStream fs = new FileStream("E:\\123.txt", Fi ...
- c# 消息机制
1.windows系统是一个消息驱动的系统,windows本身有自己的消息队列. 系统传递消息给应用程序. 应用程序的消息机制:应用程序的执行是通过消息驱动的.消息是整个应用程序的工作引擎. 2.c# ...