P3629 [APIO2010]巡逻
题目描述
在一个地区中有 n 个村庄,编号为 1, 2, ..., n。有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄。每条道路的长度均为 1 个单位。 为保证该地区的安全,巡警车每天要到所有的道路上巡逻。警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局。 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段。为了遍历所有的道路,巡警车需要走的距 离为 14 个单位,每条道路都需要经过两次。
为了减少总的巡逻距离,该地区准备在这些村庄之间建立 K 条新的道路, 每条新道路可以连接任意两个村庄。两条新道路可以在同一个村庄会合或结束 (见下面的图例(c))。 一条新道路甚至可以是一个环,即,其两端连接到同一 个村庄。 由于资金有限,K 只能是 1 或 2。同时,为了不浪费资金,每天巡警车必须 经过新建的道路正好一次。 下图给出了一些建立新道路的例子:
在(a)中,新建了一条道路,总的距离是 11。在(b)中,新建了两条道路,总 的巡逻距离是 10。在(c)中,新建了两条道路,但由于巡警车要经过每条新道路 正好一次,总的距离变为了 15。 试编写一个程序,读取村庄间道路的信息和需要新建的道路数,计算出最佳 的新建道路的方案使得总的巡逻距离最小,并输出这个最小的巡逻距离。
输入输出格式
输入格式:
第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1 行,每行两个整数 a, b, 表示村庄 a 与 b 之间有一条道路(1 ≤ a, b ≤ n)。
输出格式:
输出一个整数,表示新建了 K 条道路后能达到的最小巡逻距离。
输入输出样例
- 8 1
- 1 2
- 3 1
- 3 4
- 5 3
- 7 5
- 8 5
- 5 6
- 11
- 8 2
- 1 2
- 3 1
- 3 4
- 5 3
- 7 5
- 8 5
- 5 6
- 10
- 5 2
- 1 2
- 2 3
- 3 4
- 4 5
- 6
说明
10%的数据中,n ≤ 1000, K = 1;
30%的数据中,K = 1;
80%的数据中,每个村庄相邻的村庄数不超过 25;
90%的数据中,每个村庄相邻的村庄数不超过 150; 100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。
Solution:
本题ZYYS。
题意给出了一棵树,由1出发最后回到1,每条边都得走2次,所以一定得走$2(n-1)$的距离,然后可以加1或2条新边(可以连接任意两个点,点可以相同),新边必须至少走1次,求最小化距离。
当我们加入一条边,原树就存在一个环,环上的边可以只走1次,设环的长度为$len$,我们就要最大化$len$。
而$len-1$就是原树上的一条简单路径,要使$len$最大,那么$len-1$显然是树的直径。
对于$k=1$的情况,只要求出直径就能算出答案了。
对于$k=2$的情况,先求出一条直径,再对直径路径上的边权取反(类似于最大流中的反向边的作用),这样第二次求直径就不会和上次的冲突,即使两者有重复的部分因为边取反了,所以等价于抵消掉重合部分,答案还是照常算就好了,坑点是第二次求直径有负边,所以不能两边dfs(或bfs),只能dp去求(证明就是第二个样例),其次就是第二次直径可能为负值,直接把其当作0(因为新边可以连本身)。
代码:
- /*Code by 520 -- 8.17*/
- #include<bits/stdc++.h>
- #define il inline
- #define ll long long
- #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
- #define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
- using namespace std;
- const int N=;
- int ans,n,m,to[N],net[N],h[N],cnt=,p,c[N],d[N],tot,pre[N],w[N],mx;
- bool vis[N];
- int gi(){
- int a=;char x=getchar();
- while(x<''||x>'')x=getchar();
- while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
- return a;
- }
- il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=;}
- il void bfs(int s){
- queue<int>q;
- memset(c,-0x3f,sizeof(c));
- memset(vis,,sizeof(vis));
- memset(d,,sizeof(d));
- q.push(s),vis[s]=,c[s]=;
- while(!q.empty()){
- int u=q.front();q.pop();
- for(int i=h[u];i;i=net[i])
- if(!vis[to[i]]) d[to[i]]=u,pre[to[i]]=i,c[to[i]]=c[u]+w[i],q.push(to[i]),vis[to[i]]=;
- }
- mx=-;
- For(i,,n) if(c[i]>mx)p=i,mx=c[i];
- }
- int f[N];
- void dp(int u){
- vis[u]=;
- for(int i=h[u];i;i=net[i])
- if(!vis[to[i]]){
- dp(to[i]);
- mx=max(mx,f[u]+f[to[i]]+w[i]);
- f[u]=max(f[u],f[to[i]]+w[i]);
- }
- }
- int main(){
- n=gi(),m=gi();
- int u,v;
- For(i,,n-) u=gi(),v=gi(),add(u,v),add(v,u);
- bfs(),bfs(p);
- for(int i=p;i;i=d[i]) w[pre[i]]=w[pre[i]^]=-;
- ans=(n-<<)-mx+;
- if(m==)cout<<ans,exit();
- else {
- mx=-,memset(vis,,sizeof(vis));
- dp();
- mx=mx<?:mx;
- ans=ans-mx+;
- cout<<ans;
- }
- return ;
- }
P3629 [APIO2010]巡逻的更多相关文章
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- [洛谷P3629] [APIO2010]巡逻
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...
- 洛谷 P3629 [APIO2010]巡逻
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...
- 【题解】P3629 [APIO2010]巡逻
link 题意 有 \(n\) 个村庄,编号为 \(1, 2, ..., n\) .有 \(n – 1\) 条道路连接着这些村 庄,从任何一个村庄都可以到达其他任一个村庄.道路长度均为 1. 巡警车每 ...
- 题解 BZOJ 1912 && luogu P3629 [APIO2010]巡逻 (树的直径)
本来抄了篇题解,后来觉得题解都太不友好(我太菜了),一气之下自己打...一打打到第二天QAQ 首先什么边也不加时,总路程就是2*(n-1) 考虑k=1的时候,答案显然是2*(n-1)-直径+1=2*n ...
- 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925
题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...
- 洛谷P3629 [APIO2010]巡逻(树的直径)
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...
- P3629 [APIO2010] 巡逻 (树的直径)
(这道题考察了求直径的两种方法......) 在原图中,每条边要经过两次,增加1条后,形成了一个环,那么环上的边只需要经过一次了(大量画图分析得),再增加一条又会形成一个环,如果这两个环有重叠,重叠部 ...
- [APIO2010]巡逻(树的直径)
[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到 ...
随机推荐
- 使用WinIO库实现保护模式下的IO和内存读写
问题已解决: 原因是函数的调用方式与WinIO中不一致,使用的时候漏掉了__stdcall. 函数原定义为: 在实际的GPIO读写中遇到以下问题: SetPortVal可正常写入,但是GetPortV ...
- kali安装后相关软件的配置
更新软件apt-get updateapt-get upgrade安装输入法apt-get install ibus-pinyin apt-get install netspeed安装GNOMEapt ...
- scikit-learn API
scikit-learn API 这是scikit-learn的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以提供有关其用途的完整指南. sklearn.base:基 ...
- java 多路分发
1.概念 一个函数处理多种类型,其实和多态差不多. 但是要处理两种或者多种类型的数据时,就需要判断每种类型以及每种类型所对应的处理.(PS:我只是在走别人的老路,网上一搜这种概念,博客一大堆,我不知道 ...
- Appium+python HTML测试报告(2)——一份报告模板(转)
(原文:https://www.cnblogs.com/fancy0158/p/10055003.html) 适用于python3: 下载地址: 英文:https://pan.baidu.com/s/ ...
- Jupyter 安装并配置工作路径[转]
1.通过python的pip方式安装jupyterpython和pip都安装好后,通过cmd进入命令提示窗口,找到python安装目录下的Script目录,例如我的是路径是:C:\Program Fi ...
- (转)python+opencv实现动态物体追踪
原文链接:https://blog.csdn.net/cike14/article/details/50649811 import cv2 import numpy as np camera=cv2. ...
- phpldapadmin具体设置
一.需求 1.属性隐藏 只显示用户名,部门(因为是单OU设计为了做区分),登录密码 2.属性顺序显示 部门>用户名>登录密码 3.使用UID可以登陆 用户可以使用账户(自己的名字)登 ...
- ZOJ 3962
就是统计1~n中出现的各个数字的次数,当然是在16进制下. 不过有个区间问题的小技巧,统计从 [x,y] 可以转换成 从 [1,y] 减去 [1,x-1]. 不过要分类讨论一下,因为有可能会出现溢出, ...
- Node2vec 代码分析
Node2vec 代码从Github上clone到本地,主要是main.py和node2vec.py两个文件. 下面把我的读代码注释放到上面来, import numpy as np import n ...