题目描述

在一个地区中有 n 个村庄,编号为 1, 2, ..., n。有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄。每条道路的长度均为 1 个单位。 为保证该地区的安全,巡警车每天要到所有的道路上巡逻。警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局。 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段。为了遍历所有的道路,巡警车需要走的距 离为 14 个单位,每条道路都需要经过两次。

为了减少总的巡逻距离,该地区准备在这些村庄之间建立 K 条新的道路, 每条新道路可以连接任意两个村庄。两条新道路可以在同一个村庄会合或结束 (见下面的图例(c))。 一条新道路甚至可以是一个环,即,其两端连接到同一 个村庄。 由于资金有限,K 只能是 1 或 2。同时,为了不浪费资金,每天巡警车必须 经过新建的道路正好一次。 下图给出了一些建立新道路的例子:

在(a)中,新建了一条道路,总的距离是 11。在(b)中,新建了两条道路,总 的巡逻距离是 10。在(c)中,新建了两条道路,但由于巡警车要经过每条新道路 正好一次,总的距离变为了 15。 试编写一个程序,读取村庄间道路的信息和需要新建的道路数,计算出最佳 的新建道路的方案使得总的巡逻距离最小,并输出这个最小的巡逻距离。

输入输出格式

输入格式:

第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1 行,每行两个整数 a, b, 表示村庄 a 与 b 之间有一条道路(1 ≤ a, b ≤ n)。

输出格式:

输出一个整数,表示新建了 K 条道路后能达到的最小巡逻距离。

输入输出样例

输入样例#1:

8 1
1 2
3 1
3 4
5 3
7 5
8 5
5 6
输出样例#1:

11
输入样例#2:

8 2
1 2
3 1
3 4
5 3
7 5
8 5
5 6
输出样例#2:

10
输入样例#3:

5 2
1 2
2 3
3 4
4 5
输出样例#3:

6

说明

10%的数据中,n ≤ 1000, K = 1;

30%的数据中,K = 1;

80%的数据中,每个村庄相邻的村庄数不超过 25;

90%的数据中,每个村庄相邻的村庄数不超过 150; 100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。

Solution:

  本题ZYYS。

  题意给出了一棵树,由1出发最后回到1,每条边都得走2次,所以一定得走$2(n-1)$的距离,然后可以加1或2条新边(可以连接任意两个点,点可以相同),新边必须至少走1次,求最小化距离。

  当我们加入一条边,原树就存在一个环,环上的边可以只走1次,设环的长度为$len$,我们就要最大化$len$。

  而$len-1$就是原树上的一条简单路径,要使$len$最大,那么$len-1$显然是树的直径。

  对于$k=1$的情况,只要求出直径就能算出答案了。

  对于$k=2$的情况,先求出一条直径,再对直径路径上的边权取反(类似于最大流中的反向边的作用),这样第二次求直径就不会和上次的冲突,即使两者有重复的部分因为边取反了,所以等价于抵消掉重合部分,答案还是照常算就好了,坑点是第二次求直径有负边,所以不能两边dfs(或bfs),只能dp去求(证明就是第二个样例),其次就是第二次直径可能为负值,直接把其当作0(因为新边可以连本身)。

代码:

/*Code by 520 -- 8.17*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int ans,n,m,to[N],net[N],h[N],cnt=,p,c[N],d[N],tot,pre[N],w[N],mx;
bool vis[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=;} il void bfs(int s){
queue<int>q;
memset(c,-0x3f,sizeof(c));
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
q.push(s),vis[s]=,c[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=h[u];i;i=net[i])
if(!vis[to[i]]) d[to[i]]=u,pre[to[i]]=i,c[to[i]]=c[u]+w[i],q.push(to[i]),vis[to[i]]=;
}
mx=-;
For(i,,n) if(c[i]>mx)p=i,mx=c[i];
} int f[N]; void dp(int u){
vis[u]=;
for(int i=h[u];i;i=net[i])
if(!vis[to[i]]){
dp(to[i]);
mx=max(mx,f[u]+f[to[i]]+w[i]);
f[u]=max(f[u],f[to[i]]+w[i]);
}
} int main(){
n=gi(),m=gi();
int u,v;
For(i,,n-) u=gi(),v=gi(),add(u,v),add(v,u);
bfs(),bfs(p);
for(int i=p;i;i=d[i]) w[pre[i]]=w[pre[i]^]=-;
ans=(n-<<)-mx+;
if(m==)cout<<ans,exit();
else {
mx=-,memset(vis,,sizeof(vis));
dp();
mx=mx<?:mx;
ans=ans-mx+;
cout<<ans;
}
return ;
}

P3629 [APIO2010]巡逻的更多相关文章

  1. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  2. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  3. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  4. 【题解】P3629 [APIO2010]巡逻

    link 题意 有 \(n\) 个村庄,编号为 \(1, 2, ..., n\) .有 \(n – 1\) 条道路连接着这些村 庄,从任何一个村庄都可以到达其他任一个村庄.道路长度均为 1. 巡警车每 ...

  5. 题解 BZOJ 1912 && luogu P3629 [APIO2010]巡逻 (树的直径)

    本来抄了篇题解,后来觉得题解都太不友好(我太菜了),一气之下自己打...一打打到第二天QAQ 首先什么边也不加时,总路程就是2*(n-1) 考虑k=1的时候,答案显然是2*(n-1)-直径+1=2*n ...

  6. 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925

    题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...

  7. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  8. P3629 [APIO2010] 巡逻 (树的直径)

    (这道题考察了求直径的两种方法......) 在原图中,每条边要经过两次,增加1条后,形成了一个环,那么环上的边只需要经过一次了(大量画图分析得),再增加一条又会形成一个环,如果这两个环有重叠,重叠部 ...

  9. [APIO2010]巡逻(树的直径)

    [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到 ...

随机推荐

  1. 【SHOI2008】堵塞的交通

    题面 题解 这里提供几种不用脑子的算法(当然是离线的): $\text{LCT}$ 记下每条边的删除时间,用$\text{LCT}$维护最大生成树,每次加进一条边时,跟原来那条链上的做比较,删除那条删 ...

  2. LOJ #2585. 「APIO2018」新家

    #2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左 ...

  3. R的数据结构

    R语言中的数据结构包括标量.向量.矩阵.数组.列表以及数据框 目录 1 向量 2 矩阵 3 数据框 1 向量 向量是用于存储单一数据类型(数值.字符.逻辑值)的一维数组,示例如下: a <- c ...

  4. Scala中==,eq与equals的区别

    根据官方API的定义: final def ==(arg0: Any): Boolean The expression x == that is equivalent to if (x eq null ...

  5. linux下,将一个目录中的图片文件合成为gif图片

    # {} 为文件所在目录位置 # {} 为gif图片位置 convert -delay -depth -layers optimize -quality -loop {} {}

  6. unity图形圆形展开

    脚本如下: using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngi ...

  7. The specified value "2019-1-2" does not conform to the required format, "yyyy-MM-dd"

    问题: 在cshtml中转换的日期格式错误,前端报错:The specified value "2019-1-2" does not conform to the required ...

  8. Ztree结合jbox实现弹窗树结构

    点击添加分类,弹出事项选择框为jbox <a href="#" id="down{{row.id}}" style="display:none& ...

  9. Numpy入门笔记第三天

    __TITLE__ = "利用Numpy进行历史股价分析" __DATASOURCE__ = "ATAGURU" # CSV文件读取 import numpy ...

  10. K-近邻算法入门

    K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流” K-近邻算法的三大要素:K值得选 ...