spark的数据结构 RDD——DataFrame——DataSet区别
转载自:http://blog.csdn.net/wo334499/article/details/51689549
RDD
优点:
- 编译时类型安全
编译时就能检查出类型错误 - 面向对象的编程风格
直接通过类名点的方式来操作数据
缺点:
- 序列化和反序列化的性能开销
无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. - GC的性能开销
频繁的创建和销毁对象, 势必会增加GC
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
case class Person(id: Int, age: Int)
val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21)))
// 优点1
// idAge.filter(_.age > "") // 编译时报错, int不能跟String比
// 优点2
idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象
}
}
DataFrame
DataFrame引入了schema和off-heap
schema : RDD每一行的数据, 结构都是一样的. 这个结构就存储在schema中. Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了.
off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作.
off-heap就像地盘, schema就像地图, Spark有地图又有自己地盘了, 就可以自己说了算了, 不再受JVM的限制, 也就不再收GC的困扰了.
通过schema和off-heap, DataFrame解决了RDD的缺点, 但是却丢了RDD的优点. DataFrame不是类型安全的, API也不是面向对象风格的.
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
// API不是面向对象的
idAgeDF.filter(idAgeDF.col("age") > 25)
// 不会报错, DataFrame不是编译时类型安全的
idAgeDF.filter(idAgeDF.col("age") > "")
}
}
DataSet
DataSet结合了RDD和DataFrame的优点, 并带来的一个新的概念Encoder
当序列化数据时, Encoder产生字节码与off-heap进行交互, 能够达到按需访问数据的效果, 而不用反序列化整个对象. Spark还没有提供自定义Encoder的API, 但是未来会加入.
下面看DataFrame和DataSet在2.0.0-preview中的实现
下面这段代码, 在1.6.x中创建的是DataFrame
// 上文DataFrame示例中提取出来的
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
但是同样的代码在2.0.0-preview中, 创建的虽然还叫DataFrame
// sqlContext.createDataFrame(idAgeRDDRow, schema) 方法的实现, 返回值依然是DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
sparkSession.createDataFrame(rowRDD, schema)
}
但是其实却是DataSet, 因为DataFrame被声明为Dataset[Row]
package object sql {
// ...省略了不相关的代码
type DataFrame = Dataset[Row]
}
因此当我们从1.6.x迁移到2.0.0的时候, 无需任何修改就直接用上了DataSet.
下面是一段DataSet的示例代码
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Test {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local") // 调试的时候一定不要用local[*]
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
// 在2.0.0-preview中这行代码创建出的DataFrame, 其实是DataSet[Row]
val idAgeDS = sqlContext.createDataFrame(idAgeRDDRow, schema)
// 在2.0.0-preview中, 还不支持自定的Encoder, Row类型不行, 自定义的bean也不行
// 官方文档也有写通过bean创建Dataset的例子,但是我运行时并不能成功
// 所以目前需要用创建DataFrame的方法, 来创建DataSet[Row]
// sqlContext.createDataset(idAgeRDDRow)
// 目前支持String, Integer, Long等类型直接创建Dataset
Seq(1, 2, 3).toDS().show()
sqlContext.createDataset(sc.parallelize(Array(1, 2, 3))).show()
}
}
spark的数据结构 RDD——DataFrame——DataSet区别的更多相关文章
- APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...
- sparkSQL中RDD——DataFrame——DataSet的区别
spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型 ...
- java spark list 转为 RDD 转为 dataset 写入表中
package com.example.demo; import java.util.ArrayList; import java.util.Arrays; import java.util.Hash ...
- spark rdd df dataset
RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有parti ...
- RDD, DataFrame or Dataset
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.Da ...
- Spark(十六)DataSet
Spark最吸引开发者的就是简单易用.跨语言(Scala, Java, Python, and R)的API. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset ...
- Spark提高篇——RDD/DataSet/DataFrame(一)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD ...
- Spark提高篇——RDD/DataSet/DataFrame(二)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame ...
- Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...
随机推荐
- python 文件上传本地服务器
1:python之上传文件 1.1.url代码 """untitled1222 URL Configuration The `urlpatterns` list rout ...
- 事务与MVCC
前言 关于事务,是一个很重要的知识点,大家在面试中也会被经常问到这个问题: 数据库事务有不同的隔离级别,不同的隔离级别对锁的使用是不同的,**锁的应用最终导致不同事务的隔离级别 **:在上一篇文章中我 ...
- HTML5纯Web前端也能开发直播,不用开发服务器(使用face2face)
前段时间转载了某位大神的一篇文章,开发Web版一对一远程直播教室只需30分钟 - 使用face2face网络教室.非常有意思.看起来非常简单,但作为一名前端开发人员来说,还是有难度.因为要开发服务器端 ...
- html-html简介
一.什么是HTML? HypeText Markup Language:超文本标记语言,网页语言 超文本:超出文本的范畴,使用HTML可以轻松实现这样的操作 标记:HTML所有的操作都是通过标记实现的 ...
- PHP-掌握基本的分布式架构思想
虽然说写PHP目前都是接触的业务代码,发现写久了,也要熟悉相应的架构 在高并发,高可用的系统下,都是使用高性能的分布式架构,最近在学习相关知识 分享一张图片: 欢迎关注公众号[phper的进阶之路], ...
- day 90 DjangoRestFramework学习二之序列化组件
DjangoRestFramework学习二之序列化组件 本节目录 一 序列化组件 二 xxx 三 xxx 四 xxx 五 xxx 六 xxx 七 xxx 八 xxx 一 序列化组件 首先按照 ...
- Go类型特性-学习笔记
1.组合 Go语言使用组合来完成类型的设计,设计某一类型时想要拥有其他类型的功能只需要将其他类型嵌入该类型即可. 2.接口 与其他语言不同的是,编译器会自动判断该类型是否符合某正在使用的接口,甚至不需 ...
- 20155227 2016-2017-2 《Java程序设计》实验一 Java开发环境的熟悉(Windws + IDEA)实验报告
20155227 2016-2017-2 <Java程序设计>实验一 Java开发环境的熟悉(Windws + IDEA)实验报告 实验内容 1.使用JDK编译.运行简单的Java程序: ...
- 20155235 2017-2018-1 《Java程序设计》第2周学习总结
20155235 2017-2018-1 <Java程序设计>第2周学习总结 教材学习内容总结 3.1类型.变量与运算符 类型 基本类型 类类型 变量 基本规则 不可以用数字作为开头,不可 ...
- PhpStorm2016.2版本 安装与破解
1.PhpStorm2016简介以及下载地址 1.1.PhpStorm介绍 PhpStorm是一个轻量级且便捷的PHP IDE,其旨在提高用户效率,可深刻理解用户的编码,提供智能代码补全 快速导 ...