B树、B+树、二叉树、红黑树
B树
下面来具体介绍一下B-树(Balance Tree),一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。
B+树
一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。
一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素
二叉查找树(BST)具备什么特性呢?
1.左子树上所有结点的值均小于或等于它的根结点的值。
2.右子树上所有结点的值均大于或等于它的根结点的值。
3.左、右子树也分别为二叉排序树。
红黑树
1.节点是红色或黑色。
2.根节点是黑色。
3.每个叶子节点都是黑色的空节点(NIL节点)。
4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
B树、B+树、二叉树、红黑树的更多相关文章
- 吐血整理:二叉树、红黑树、B&B+树超齐全,快速搞定数据结构
前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转
前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...
- 红黑树与AVL树
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...
- 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树
1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...
- Linux内核之于红黑树and AVL树
为什么Linux早先使用AVL树而后来倾向于红黑树? 实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2- ...
- AVL树、红黑树以及B树介绍
简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与 ...
- 树形结构_红黑树:平衡2X 哈夫曼树:最优2X
红黑树:平衡2X 哈夫曼树:最优2X 红黑树 :TreeSet.TreeMap 哈夫曼树 1. 将w1.w2.…,wn看成是有n 棵树的森林(每棵树仅有一个结点): 2. 在森林中选出根结点的权值最小 ...
- Java数据结构和算法(八)--红黑树与2-3树
红黑树规则: 1.每个节点要么是红色,要么是黑色 2.根节点都是黑色节点 3.每个叶节点是黑色节点 3.每个红色节点的两个子节点都是黑色节点,反之,不做要求,换句话说就是不能有连续两个红色节点 4.从 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
随机推荐
- 【RF库测试】DateTime库
术语说明: 1.Epoch指的是一个特定的时间:1970-01-01 00:00:00 UTC. 2.国际标准化组织的国际标准ISO 8601是日期和时间的表示方法,格式是 'YYYY-MM-DD h ...
- Linux ulimit 命令
ulimit命令用来限制系统用户对 shell 资源的访问,常见用法如下: [root@localhost ~]$ ulimit -a # 查看当前所有的资源限制 [root@localhost ~] ...
- 浅谈Socket长连+多线程
缘由 不知各位同仁有没有发现,用简单,无外乎就是都是一个流程 1)监听链接 2)校验链接是否是正常链接 3)保存链接至全局静态字典 4)开启新线程监听监听到的线程报文 5)执行对应命令或者发送对应命令 ...
- select下拉框不能赋值
前言: 需要用到类似于下面的下拉选择框,按照官方文档写,始终实现不了下拉框赋上值的情况. 过程: 认认真真的看了好几遍文档,但是还没找到原因,不过还是应该感谢自己加入的vue-admin的微信群,大家 ...
- 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)
在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...
- js积累
动态加载JS文件(function (d) { var t=d.createElement("script");t.type="text/javascript" ...
- HTTP/2笔记之消息交换
前言 无论是HTTP/1.*还是HTTP/2,HTTP的基本语义是不变的,比如方法语义(GET/PUST/PUT/DELETE),状态码(200/404/500等),Range Request,Cac ...
- js+jquery(二)
1.获取列表框所选中的全部选项的值 $("select").change(function() { // 设置列表框change 事件 // 获取列表框所选中的全部选项的值 ale ...
- Egret Wing4.0.3 合并资源图片问题
一 发布项目时,选择合并图片资源 选择合图大小 发布后,图片合并.随机了图片名字. 二 随机名的问题 当资源不变更的情况下,多次发布,每次发布后资源的图片随机名是不变的. 现在改变preload组 ...
- 微信小程序 --- 页面渲染
page.wxml文件 <view>{{text}}</view> page.js 文件: //获取应用实例 const app = getApp() Page({ data: ...