Decision Tree such as C4.5 is easy to parallel. Following is an example.

This is a non-parallel version:

public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){
for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new LinkedList<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
while (!Q.isEmpty()){
TreeNode v = Q.poll();
if(v.getDepth() >= model.getMaxDepth()){
continue;
}
FeatureSplit<FK> featureSplit = model.selectFeature(v);
if(featureSplit.getFeatureId() == null){
continue;
}
v.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children =
model.newTreeNode(v, featureSplit);
TreeNode leftNode = children.getKey();
TreeNode rightNode = children.getValue();
if(leftNode != null
&& leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null
&& rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
}

And this is a parallel version:

public class NodeSplitThread implements Runnable{
private TreeNode<FK, FV> node = null;
private Queue<TreeNode<FK, FV>> Q = null; public NodeSplitThread(TreeNode<FK, FV> node, Queue<TreeNode<FK, FV>> Q){
this.node = node;
this.Q = Q;
}
@Override
public void run() {
if(node.getDepth() >= model.getMaxDepth()){
return;
}
FeatureSplit<FK> featureSplit = model.selectFeature(node);
if(featureSplit.getFeatureId() == null){
return;
}
node.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children = model.newTreeNode(node, featureSplit);
TreeNode<FK, FV> leftNode = children.getKey();
TreeNode<FK, FV> rightNode = children.getValue(); if(leftNode != null && leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null && rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
} public List<TreeNode<FK, FV>> pollTopN(Queue<TreeNode<FK, FV>> Q, int n){
List<TreeNode<FK, FV>> ret = new ArrayList<TreeNode<FK, FV>>();
for(int i = 0; i < n; ++i){
if(Q.isEmpty()) break;
TreeNode<FK, FV> node = Q.poll();
ret.add(node);
}
return ret;
} @Override
public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){ for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new ConcurrentLinkedQueue<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
ExecutorService threadPool = Executors.newFixedThreadPool(10);
while (!Q.isEmpty()){
List<TreeNode<FK, FV>> nodes = pollTopN(Q, 10);
List<Future> tasks = new ArrayList<Future>(nodes.size());
for(TreeNode<FK, FV> node : nodes){
Future task = threadPool.submit(new NodeSplitThread(node, Q));
tasks.add(task);
}
for(Future task : tasks){
try {
task.get();
} catch (InterruptedException e) {
continue;
} catch (ExecutionException e) {
continue;
}
}
}
threadPool.shutdown();
try {
threadPool.awaitTermination(60, TimeUnit.SECONDS);
} catch (InterruptedException e) {
threadPool.shutdownNow();
Thread.interrupted();
}
threadPool.shutdownNow();
}

http://xlvector.net/blog/?p=896

Parallel Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

随机推荐

  1. C# 哈希加密

    1.方法一: [c-sharp] view plaincopy //适用于C#语言 //使用前需导入以下命名空间:using System.Web.Security; //第一个参数为需加密的字符串, ...

  2. 几张图轻松理解String.intern()

    https://blog.csdn.net/soonfly/article/details/70147205 在翻<深入理解Java虚拟机>的书时,又看到了2-7的 String.inte ...

  3. cmp()

    cmp(x, y) 用于比较两个对象的大小,如果 x > y 返回 1 ,如果 x = y 返回 0 ,如果 x < y 返回 -1 In [23]: cmp(5, 2) Out[23]: ...

  4. C语言近程型(near)和远程型(far)的区别是什么?

    DOS用一种分段结构来寻址计算机的内存,每一个物理存储位置都有一个可以用段一偏移量方式来访问的相关地址.例如,下面就是一个典型的段式地址:     A000:1234 冒号左边的部分代表段地址(A00 ...

  5. OnGlobalLayoutListener用法

    1.implements ViewTreeObserver.OnGlobalLayoutListener{} 2.mContentView.getViewTreeObserver().addOnGlo ...

  6. Ubuntu13.10:[3]如何开启SSH SERVER服务

    作为最新版本的UBUNTU系统而言,开源,升级全部都不在话下.传说XP已经停止补丁更新了,使用UBUNTU也是一个很好的选择.ubuntu默认安装完成后只有ssh-agent(客户端模式),宾哥百度经 ...

  7. iPad UIPopoverController弹出窗口的位置和坐标

    本文转载至:http://blog.csdn.net/chang6520/article/details/7921181 TodoViewController *contentViewControll ...

  8. Android 判断是否是Rtl

    第一种方法: private boolean isRtl() { return TextUtils.getLayoutDirectionFromLocale(Locale.getDefault()) ...

  9. kubernetes 创建tomcat 容器

    方案一: 使用k8s dashboard 创建rc 1.  界面操作 提示:暂时 忽略 查看: 2.测试 由于是外部服务 直接用  节点的ip访问: 同样也是   第二个端口可以访问.感觉 跟之前的提 ...

  10. SNMP信息泄露漏洞

    SNMP协议简介 名称:SNMP(Simple Network Management Protocol)简单网络管理协议 端口:161 协议:UDP 用途:SNMP代理者以变量呈现管理资料.管理系统透 ...