题意

Language:Default
Fence Obstacle Course
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 2900 Accepted: 1042

Description

Farmer John has constructed an obstacle course for the cows' enjoyment. The course consists of a sequence of N fences (1 <= N <= 50,000) of varying lengths, each parallel to the x axis. Fence i's y coordinate is i.



The door to FJ's barn is at the origin (marked '*' below). The starting point of the course lies at coordinate (S,N).


+-S-+-+-+ (fence #N)

+-+-+-+ (fence #N-1)

... ...

+-+-+-+ (fence #2)

+-+-+-+ (fence #1)

=|=|=|=*=|=|=| (barn)

-3-2-1 0 1 2 3

FJ's original intention was for the cows to jump over the fences, but cows are much more comfortable keeping all four hooves on the ground. Thus, they will walk along the fence and, when the fence ends, they will turn towards the x axis and continue walking in a straight line until they hit another fence segment or the side of the barn. Then they decide to go left or right until they reach the end of the fence segment, and so on, until they finally reach the side of the barn and then, potentially after a short walk, the ending point.



Naturally, the cows want to walk as little as possible. Find the minimum distance the cows have to travel back and forth to get from the starting point to the door of the barn.

Input

* Line 1: Two space-separated integers: N and S (-100,000 <= S <= 100,000)



* Lines 2..N+1: Each line contains two space-separated integers: A_i and B_i (-100,000 <= A_i < B_i <= 100,000), the starting and ending x-coordinates of fence segment i. Line 2 describes fence #1; line 3 describes fence #2; and so on. The starting position will satisfy A_N <= S <= B_N. Note that the fences will be traversed in reverse order of the input sequence.

Output

* Line 1: The minimum distance back and forth in the x direction required to get from the starting point to the ending point by walking around the fences. The distance in the y direction is not counted, since it is always precisely N.

Sample Input

4 0
-2 1
-1 2
-3 0
-2 1

Sample Output

4

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.



INPUT DETAILS:



Four segments like this:


+-+-S-+ Fence 4

+-+-+-+ Fence 3

+-+-+-+ Fence 2

+-+-+-+ Fence 1

|=|=|=*=|=|=| Barn

-3-2-1 0 1 2 3

OUTPUT DETAILS:



Walk positive one unit (to 1,4), then head toward the barn, trivially going around fence 3. Walk positive one more unit (to 2,2), then walk to the side of the barn. Walk two more units toward the origin for a total of 4 units of back-and-forth walking.

Source

分析

参照逐梦起航-带梦飞翔的题解,线段树优化DP

设f[i][0/1]表示在通过第i条栅栏后,处于栅栏左边/右边的最小路径长。

因为奶牛是直线下来的,所以最优方案当然是从上一个栅栏的这个位置下来。由于有栅栏的影响,奶牛们不能顺利的下来,此时到达这个位置的最优策略要么是从前面那个栅栏的左端点过来,要么从右端点过来。所以有

\[f[i][0]=\min\{f[j][0]+|l_i-l_j|,f[j][1]+|l_i-r_j|\} \\
f[i][1]=\min\{f[j][0]+|r_i-l_j|,f[j][1]+|r_i-r_j|\}
\]

其中的j就是上一个挡住了这个位置的栅栏。我们可以用线段树来维护这个栅栏的编号。当栅栏(l[i],r[i]),出现后,我们把线段树上(l[i],r[i])这段区间改成i,表示这个位置是栅栏i阻挡了。对于后面的栅栏,修改时直接覆盖前面的信息即可。我们只要实现一个改段求点的线段树即可。

特别的,线段树初始值为0。一个位置如果得到的j=0,那么说明它前面没有栅栏,它可以直接从s过来,路径=abs(s-p)。

时间复杂度\(O(n\log s)\),也可以用线段树连边跑最短路,但这题用DP来做常数小。

代码

#include<iostream>
#include<cmath>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=5e4+1,S=2e5+1,X=1e5;
int n,s,l[N],r[N],f[N][2];
struct T {int l,r,x;}t[S*4];
void build(int p,int l,int r){
t[p].l=l,t[p].r=r,t[p].x=l==r?0:-1;
if(l==r) return;
int mid=l+r>>1;
build(p<<1,l,mid),build(p<<1|1,mid+1,r);
}
void change(int p,int l,int r,int x){
if(l<=t[p].l&&t[p].r<=r) return t[p].x=x,void();
if(t[p].x!=-1) t[p<<1].x=t[p<<1|1].x=t[p].x,t[p].x=-1;
int mid=t[p].l+t[p].r>>1;
if(l<=mid) change(p<<1,l,r,x);
if(r>mid) change(p<<1|1,l,r,x);
}
int ask(int p,int x){
if(t[p].l==t[p].r) return t[p].x;
if(t[p].x!=-1) t[p<<1].x=t[p<<1|1].x=t[p].x,t[p].x=-1;
int mid=t[p].l+t[p].r>>1;
return ask(x<=mid?p<<1:p<<1|1,x);
}
int main(){
read(n),read(s);
build(1,0,X*2);
s+=X,l[0]=r[0]=X;
for(int i=1,w;i<=n;++i){
l[i]=read<int>()+X,r[i]=read<int>()+X;
w=ask(1,l[i]);
f[i][0]=min(f[w][0]+abs(l[i]-l[w]),f[w][1]+abs(l[i]-r[w]));
w=ask(1,r[i]);
f[i][1]=min(f[w][0]+abs(r[i]-l[w]),f[w][1]+abs(r[i]-r[w]));
change(1,l[i],r[i],i);
}
printf("%d\n",min(f[n][0]+s-l[n],f[n][1]+r[n]-s));
return 0;
}

POJ2374 Fence Obstacle Course的更多相关文章

  1. poj2374 Fence Obstacle Course[线段树+DP]

    https://vjudge.net/problem/POJ-2374 吐槽.在这题上面磕了许久..英文不好题面读错了qwq,写了个错的算法搞了很久..A掉之后瞥了一眼众多julao题解,**,怎么想 ...

  2. POJ2374 Fence Obstacle Course 【线段树】

    题目链接 POJ2374 题解 题意: 给出\(n\)个平行于\(x\)轴的栅栏,求从一侧栅栏的某个位置出发,绕过所有栅栏到达另一侧\(x = 0\)位置的最短水平距离 往上说都是线段树优化dp 我写 ...

  3. 【BZOJ3387】[Usaco2004 Dec]Fence Obstacle Course栅栏行动 线段树

    [BZOJ3387][Usaco2004 Dec]Fence Obstacle Course栅栏行动 Description 约翰建造了N(1≤N≤50000)个栅栏来与牛同乐.第i个栅栏的z坐标为[ ...

  4. POJ 2374 Fence Obstacle Course(线段树+动态规划)

    Fence Obstacle Course Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 2524   Accepted:  ...

  5. Fence Obstacle Course

    Fence Obstacle Course 有n个区间自下而上有顺序的排列,标号\(1\sim n\),第i个区间记做\([l_i,r_i]\),现在从第n个区间的起点s出发(显然s在\([l_n,r ...

  6. [BZOJ 3387] Fence Obstacle Course

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3387 [算法] f[i][0]表示从第i个栅栏的左端点走到原点的最少移动步数 f[i ...

  7. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  8. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  9. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

随机推荐

  1. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  2. EditPlus 4.3.2475 中文版已经发布(10月28日更新)

    新的修订版修复了上移多个插入点时会造成程序崩溃的问题.

  3. Java 动态代理是基于什么原理

    动态代理 ①动态代理概念理解 动态代理是一种方便运行时动态构建代理.动态处理代理方法调用的机制,很多场景都利用类似机制做到的,比如用来包装RPC调用.面向切面的变成(AOP) 实现动态代理的方式很多, ...

  4. php-fpm开启报错-ERROR: An another FPM instance seems to already listen on /tmp/php-cgi.sock

    在升级了php7.2.0版本之后,重新启动php-fpm过程中遇到一个报错. An another FPM instance seems to already listen on /tmp/php-c ...

  5. JS地址自动返填技术

    系统设计地址为省市县三级联动,规范是规范了,但是无形中增加了系统操作的时间成本,因此设计地址自动返填技术,只要把地址拷贝到详细地址框中,可以自动返填到省市县三级联动的下拉框中. 还好洒家的大学不是混过 ...

  6. Hexo搭建 github.io 静态博客使用指南

    What? Hexo 是一个快速.简洁且高效的博客框架.可以使用markdown 解析成文章,在几秒内,即可利用靓丽的主题生成静态网页. Why? 笔记需要整理 How? github 创建 char ...

  7. [AHOI2008]上学路线

    题意:给定一个无向图,删除某些边有一定的代价,要求删掉使得最短路径减小,求最小代价. 首先要spfa求出起点到各个点的最短距离.对于一条权值为w,起点为i,终点为j的边,设dis[k]为起点到k点的距 ...

  8. [BZOJ1877][SDOI2009]SuperGCD

    题目大意 求两个个高精度数的gcd 题目解析 在学习gcd的时候,书上就记载了"更相减损术"这一方法 基于这种方法,我们进行优化,使得我们能快速求出两个大数的gcd 对于 \(a, ...

  9. ubuntu 10.04 安装arm交叉编译器

    家里有一台cotext-A9(armv7-a) 的盒子,现在不用了, 一直想着废物利用.于是想怎么为这盒子编译程序. 目标机器: root@routon-h1:/# uname -a Linux ro ...

  10. MVVM特点、源(数据)与目标(如:控件等)的映射

    数据(源,viewMode表示)与控件(目标)的完全映射, 在绑定之后,通过操作数据,改变控件显示效果.显示内容.状态等.