题目链接

BZOJ1069

题解

首先四个点一定在凸包上

我们枚举对角线,剩下两个点分别是两侧最远的点

可以三分,复杂度\(O(n^2logn)\)

可以借鉴旋转卡壳的思想,那两个点随着对角线的一定单调不减,可以用两个指针维护,复杂度\(O(n^2)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct point{double x,y;}p[maxn],t[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
inline point operator +(const point& a,const point& b){
return (point){a.x + b.x,a.y + b.y};
}
inline point operator -(const point& a,const point& b){
return (point){a.x - b.x,a.y - b.y};
}
inline double operator *(const point& a,const point& b){
return a.x * b.x + a.y * b.y;
}
inline double cross(const point& a,const point& b){
return a.x * b.y - a.y * b.x;
}
inline double dis(const point& a,const point& b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline double S(const point& a,const point& b,const point& c){
return fabs(0.5 * cross(c - a,c - b));
}
int n,st[maxn],top;
void cal(){
sort(p + 1,p + 1 + n);
st[top = 1] = 1;
for (int i = 2; i <= n; i++){
while (top > 1 && cross(p[i] - p[st[top]],p[st[top]] - p[st[top - 1]]) <= 0)
top--;
st[++top] = i;
}
int tmp = top;
for (int i = n - 1; i; i--){
while (top > tmp && cross(p[i] - p[st[top]],p[st[top]] - p[st[top - 1]]) <= 0)
top--;
st[++top] = i;
}
n = --top;
for (int i = 1; i <= n; i++) t[i] = p[st[i]];
for (int i = 1; i <= n; i++) p[i] = t[i];
}
void solve(){
if (n == 3){printf("%.3lf",S(p[1],p[2],p[3])); return;}
double ans = 0;
for (int i = 1; i <= n - 3; i++){
int x = i + 1,y = i + 3;
for (int j = i + 3; j <= n; j++){
if (S(p[i],p[i + 2],p[j]) > S(p[i],p[i + 2],p[y]))
y = j;
}
ans = max(ans,S(p[i],p[i + 2],p[x]) + S(p[i],p[i + 2],p[y]));
for (int j = i + 3; j <= n; j++){
while (x + 1 < j && S(p[i],p[j],p[x + 1]) > S(p[i],p[j],p[x])) x++;
while (y + 1 <= n && S(p[i],p[j],p[y + 1]) > S(p[i],p[j],p[y])) y++;
ans = max(ans,S(p[i],p[j],p[x]) + S(p[i],p[j],p[y]));
}
}
printf("%.3lf\n",ans);
}
int main(){
n = read();
if (n <= 2) {puts("0"); return 0;}
REP(i,n) scanf("%lf%lf",&p[i].x,&p[i].y);
cal();
//REP(i,n) printf("(%lf,%lf)\n",p[i].x,p[i].y);
solve();
return 0;
}

BZOJ1069 [SCOI2007]最大土地面积 【凸包 + 旋转卡壳】的更多相关文章

  1. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  2. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  3. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  4. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)

    http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...

  10. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. My status

    I haven‘t any one who is strong relationship with me. My skill is normal. I'm not interesting in neg ...

  2. jmeter执行顺序及作用域规则

    1.执行顺序 配置元件 前置处理器 定时器 采样器 后置处理器 断言 监听器 备注: 服务器响应为空的话后三个不执行 作用域内存在采样器时定时器.断言.前置/后置处理器才执行 逻辑控制器和采样器按照在 ...

  3. 借助全新 MATLAB® 适配器代码示例读取英特尔® 实感™ 摄像头数据流

    下载源代码请访问原文地址:借助全新 MATLAB® 适配器代码示例读取英特尔® 实感™ 摄像头数据流 简介 该可下载代码示例简要介绍了如何使用英特尔® 实感™ SDK 和 MATLAB 的图像采集工具 ...

  4. 用了这么多年的MCU,你知道哪些MCU原厂最牛?

    单片机诞生于1971年,经历了SCM.MCU.SoC三大阶段.单片机由以前的1位.4位.8位.16位,发展到现在的32位甚至64位. 90年代后随着消费电子产品大发展,单片机技术得到了巨大提高,相继诞 ...

  5. 关于css文字的扩展

    1.不换行: .title{ white-space:nowrap; text-overflow:ellipsis; } 2.超出变三点 .title{ white-space:nowrap; tex ...

  6. 跳蚤APP

    1.项目描述 我们致力于制作一款服务于校内师生的物品转让平台,在此平台上的用户可以发布要转让或欲购买的物品信息. 2.创新与收益 Need(需求) 如今在市场上有许多的二手交易线上平台,它们的服务范围 ...

  7. 03 JAVA IO

    java.io包中定义了多个流类型来实现输入输出功能,以不同的角度进行分类: 按数据流的方向不同可以分为输入流和输出流 按处理数据单位不通可以分为字节流和字符流 按照功能不同可以分为节点流和处理流 所 ...

  8. Unicode和UTF-8

    作者:于洋链接:https://www.zhihu.com/question/23374078/answer/69732605来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出 ...

  9. struts2 action json(还有servlet的)

    http://yshjava.iteye.com/blog/1333104 留着 版权声明:本文为博主原创文章,未经博主允许不得转载.

  10. HDU 5465 Clarke and puzzle Nim游戏+二维树状数组

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5465 Clarke and puzzle  Accepts: 42  Submissions: 26 ...