#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int primes[maxn], vis[maxn];
double f[maxn];
int ans = ;
void init()
{
mem(vis, );
for(int i=; i<maxn; i++)
{
if(vis[i]) continue;
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} double dp(int x){
if (x==) return 0.0;
if (f[x]) return f[x];
// vis[x]=1;
int g=,p=;
double res=;
for(int j=; j<ans && primes[j] <= x; j++){
if (primes[j]>x) break;
p++;
if (x%primes[j]==){ g++; res+=dp(x/primes[j]);}
}
f[x] = (res+p)/(double)g;
return f[x];
}
int main()
{
init();
int T, kase = ;
mem(f, 0.0);
cin>> T;
while(T--)
{
int n;
cin>> n;
double ans = dp(n);
printf("Case %d: %.10f\n", ++kase, ans);
} return ;
}

Race to 1 UVA - 11762 (记忆dp概率)的更多相关文章

  1. UVa 11762 (期望 DP) Race to 1

    设f(x)表示x转移到1需要的次数的期望,p(x)为不超过x的素数的个数,其中能整除x的有g(x)个 则有(1-g(x)/p(x))的概率下一步还是转移到x,剩下的情况各有1/p(x)的概率转移到x/ ...

  2. UVA 11762 - Race to 1(概率)

    UVA 11762 - Race to 1 题意:给定一个n,每次随即选择一个n以内的质数,假设不是质因子,就保持不变,假设是的话.就把n除掉该因子,问n变成1的次数的期望值 思路:tot为总的质数. ...

  3. UVA 11427 Expect the Expected(DP+概率)

    链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...

  4. tyvj P1864 [Poetize I]守卫者的挑战(DP+概率)

    P1864 [Poetize I]守卫者的挑战 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜 ...

  5. UVA.10192 Vacation (DP LCS)

    UVA.10192 Vacation (DP LCS) 题意分析 某人要指定旅游路线,父母分别给出了一系列城市的旅游顺序,求满足父母建议的最大的城市数量是多少. 对于父母的建议分别作为2个子串,对其做 ...

  6. UVA.10130 SuperSale (DP 01背包)

    UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...

  7. [LnOI2019]加特林轮盘赌(DP,概率期望)

    [LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVA - 11762 - Race to 1 记忆化概率

    Dilu have learned a new thing about integers, which is - any positive integer greater than 1 can bed ...

随机推荐

  1. Apache入门 篇(二)之apache 2.2.x常用配置解析

    一.httpd 2.2.x目录结构 Cnetos 6.10 YUM安装httpd 2.2.x # yum install -y httpd 程序环境 主配置文件: /etc/httpd/conf/ht ...

  2. cogs930找第k小的数(k-th number)

    cogs930找第k小的数(k-th number) 原题链接 题解 好题... 终极版是bzoj3065(然而并不会) 先讲这个题... 维护\(n+1\)个值域线段树(用主席树),标号\(0\) ...

  3. Java构造方法与析构方法实例剖析

    Java构造方法 类有一个特殊的成员方法叫作构造方法,它的作用是创建对象并初始化成员变量.在创建对象时,会自动调用类的构造方法. 构造方法定义规则:Java 中的构造方法必须与该类具有相同的名字,并且 ...

  4. nginx基础配置加基础实战演示

    目录 基本配置 设置用户 工作衍生进程数 错误日志存放路径 pid文件存放路径 设置最大连接数 http->server gzip 字符编码 nginx的基本格式 实战配置 虚拟主机配置 开始配 ...

  5. Selenium2+python自动化-xpath定位语法

    前言    在上一篇简单的介绍了用工具查看目标元素的xpath地址,工具查看比较死板,不够灵活,有时候直接复制粘贴会定位不到.这个时候就需要自己手动的去写xpath了,这一篇详细讲解xpath的一些语 ...

  6. AndroidArchitecture

    title: AndroidArchitecture date: 2016-04-08 23:26:20 tags: [architecture] categories: [Mobile,Androi ...

  7. HTML5+Bootstrap 学习笔记 2

    navbar升级 从Bootstrap 2到Bootstrap 3 1. .navbar-inner已从Bootstrap 3中去除. 2. <ul class="nav"& ...

  8. 遗传算法框架GAFT优化小记

    前言 前段时间一直在用自己写的遗传算法框架测试算法在优化力场参数的效果,但是跑起来效率很慢,因为适应度函数需要调用多次力场程序计算能量,但是还是比我预想中的慢我也没有及时对程序进行profiling和 ...

  9. hbase 预分区

    转载 http://www.cnblogs.com/bdifn/p/3801737.html

  10. 单源最短路——Bellman-Ford算法

    1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...