3294: [Cqoi2011]放棋子

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 628  Solved: 238
[Submit][Status][Discuss]

Description

 

Input

输入第一行为两个整数nmc,即行数、列数和棋子的颜色数。第二行包含c个正整数,即每个颜色的棋子数。所有颜色的棋子总数保证不超过nm

Output

输出仅一行,即方案总数除以 1,000,000,009的余数。

Sample Input

4 2 2
3 1

Sample Output

8

HINT

N,M<=30 C<=10 总棋子数<=250

Source

分析:

上课不好好听课的我TAT...

此题最重要的思想感觉是补集转化思想...

f[i][j][k]代表前k种颜色占据了i行j列的方案数,那么怎么转移...

f[i][j][k]=Σf[i-x][j-y][k-1]*g[x][y][k]*c[i][x]*c[j][y]

g[x][y][k]代表什么?第k种颜色刚好占据了x行y列...感觉这个转移还是很好想的...

但是问题来了...g[x][y][k]怎么求...

我们可以转化为总方案数减去不合法的方案数,也就是g[i][j][k]=c[i*j][num[k]]-Σg[x][y][k]*c[i][x]*c[j][y]...

注意边界...WA了好几次...QAQ...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define int long long
using namespace std; const int maxn=+,MOD=1e9+; int n,m,co,ans,num[maxn],c[maxn*maxn][maxn*maxn],f[maxn][maxn][maxn],g[maxn][maxn][maxn]; signed main(void){
memset(f,,sizeof(f));
memset(g,,sizeof(g));
scanf("%lld%lld%lld",&n,&m,&co);
for(int i=;i<=co;i++)
scanf("%lld",&num[i]);
for(int i=;i<=;i++)
c[i][]=c[i][i]=;
for(int i=;i<=;i++)
for(int j=;j<i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%MOD;
for(int k=;k<=co;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(i*j>=num[k]&&max(i,j)<=num[k]){
g[i][j][k]=c[i*j][num[k]];
for(int x=;x<=i;x++)
for(int y=;y<=j;y++)
if((i-x)||(j-y))
g[i][j][k]=(g[i][j][k]-g[x][y][k]*c[i][x]%MOD*c[j][y]%MOD+MOD)%MOD;
}
f[][][]=;
for(int k=;k<=co;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(i*j>=num[k]){
for(int x=;x<=i;x++)
for(int y=;y<=j;y++)
(f[i][j][k]+=f[i-x][j-y][k-]*g[x][y][k]%MOD*c[i][x]%MOD*c[j][y]%MOD)%=MOD;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
(ans+=f[i][j][co]*c[n][i]%MOD*c[m][j]%MOD)%=MOD;
printf("%lld\n",ans);
return ;
}

by NeighThorn

BZOJ 3294: [Cqoi2011]放棋子的更多相关文章

  1. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  2. BZOJ 3294: [Cqoi2011]放棋子(计数dp)

    传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...

  3. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  4. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  5. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  6. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  7. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  8. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  9. BZOJ3294: [Cqoi2011]放棋子

    Description   Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...

随机推荐

  1. 根据字符串生成类---类的类型.self---根据字符串创建控制器对象

    swift和OC一样,都是通过NSClassFromString,根据一个字符串,生成相应的类. // UITabBarButton是系统的私有类,不能直接使用 // if btn.isKind(of ...

  2. TimeUnit 使用

    TimeUnit是java.util.concurrent包下面的一个类,表示给定单元粒度的时间段 主要作用 时间颗粒度转换 延时 常用的颗粒度 TimeUnit.DAYS //天 TimeUnit. ...

  3. 自定义圆形控件 RoundImageView

    1.自定义圆形控件 RoundImageView package com.ronye.CustomView; import android.content.Context; import androi ...

  4. Android开发中遇到的小问题 一

    1)想要ListView活着Girdview左右留些空隙,但Scrollbar要在屏幕最右边 在xml中加入 android:paddingLeft="8dp" android:p ...

  5. iOS开发之百度地图导航

    本篇主要讲述百度地图的导航功能: 第一步:在使用百度导航之前,我们需要在百度地图开放平台上下载导航的 SDK,共85.8M,网速不好的同学可提前准备好. 第二步:引入导航所需的系统包 将AudioTo ...

  6. linux下 yum 安装mysql和卸载

    1.查看有没有安装过: yum list installed mysql* rpm -qa | grep mysql* 2.查看有没有安装包: yum list mysql* 3.安装mysql客户端 ...

  7. [转]listview加载性能优化ViewHolder

    当listview有大量的数据需要加载的时候,会占据大量内存,影响性能,这时候就需要按需填充并重新使用view来减少对象的创建. ListView加载数据都是在public View getView( ...

  8. 【转】Serverless架构

    这是来自martinfowler.com的Serverless架构一文的大意翻译. 什么是Serverless?    Serverless首先是用于描述我们的应用程序是明显或充分地依赖第三方应用或服 ...

  9. mysql 判断表字段或索引是否存在

    判断字段是否存在: DROP PROCEDURE IF EXISTS schema_change; DELIMITER // CREATE PROCEDURE schema_change() BEGI ...

  10. 虚拟机中MySQL连接问题:Lost connection to MySQL server at 'reading initial communication packet, system error: 0 以及 host is not allowed to connect mysql

    环境:在VirtualBox中安装了Ubuntu虚拟机,网络使用了NAT模式,开启了端口转发. 局域网内其他计算机访问虚拟机中的MySQL Server出现两个问题: Lost connection ...