1、题目大意:给你一棵树,树的每个节点都有一个权值,是0或1,最开始都是0,你可以做一种修改操作,就是把一个节点和它相邻的
节点的权值取反,问最少几次修改能把所有节点的权值变得都是1,最多100个节点

2、分析:经典高斯消元问题,如果i节点的修改能够影响到j节点,那么a[i][j] = 1;(a是系数矩阵)

等式的右边是1。。。对于所有的自由元2^n暴力枚举,然后就AC了, 这题坑了一个礼拜啊,(大神们不要嘲笑我T_T)

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
int a[110][110], is_free[110], p[110], ans[110], end_ans, m, tot;
inline void gauss_elimination(int n){
    for(int i = 1, j = 1; i <= n; i ++, j ++){
        if(j == n + 1){
            m = i - 1;
            return;
        }
        for(int k = i; k <= n; k ++){
            if(a[k][j]){
                for(int h = 1; h <= n + 1; h ++)
                    swap(a[i][h], a[k][h]);
                break;
            }
        }
        if(!a[i][j]){
            is_free[j] = 1;
            tot ++;
            i --;
            continue;
        }
        for(int k = i + 1; k <= n; k ++){
            if(a[k][j]){
                for(int h = j; h <= n + 1; h ++){
                    a[k][h] ^= a[i][h];
                }
            }
        }
    }
    m = n;
    return;
}
int main(){
    int n;
    while(scanf("%d", &n) != EOF){
        if(n == 0) return 0;
        memset(a, 0, sizeof(a));
        memset(is_free, 0, sizeof(is_free));
        memset(ans, 0, sizeof(ans));
        tot = 0;
        end_ans = 2147483647;
        for(int i = 1; i < n; i ++){
            int u, v;
            scanf("%d%d", &u, &v);
            a[u][v] = a[v][u] = 1;
        }
        for(int i = 1; i <= n; i ++) a[i][i] = a[i][n + 1] = 1;
        gauss_elimination(n);
        for(int i = 0; i < (1 << tot); i ++){
            for(int j = 0; j < tot; j ++){
                if(i & (1 << j)) p[j + 1] = 1;
                else p[j + 1] = 0;
            }
            int u = 0;
            for(int j = 1; j <= n; j ++){
                if(is_free[j]){
                    u ++;
                    ans[j] = p[u];
                }
            }
            for(int k = n, j = m; j >= 1; j --){
                for( ; k && is_free[k]; k --);
                ans[k] = a[j][n + 1];
                for(int h = k + 1; h <= n; h ++){
                    if(a[j][h])
                        ans[k] ^= ans[h];
                }
                k --;
            }
            int cnt = 0;
            for(int j = 1; j <= n; j ++) if(ans[j])
                cnt ++;
            end_ans = min(end_ans, cnt);
        }
        printf("%d\n", end_ans);
    }
    return 0;
}

BZOJ2466——[中山市选]树的更多相关文章

  1. [bzoj2466][中山市选2009]树_树形dp

    树  bzoj-2466 中山市选-2009 题目大意:给定一棵树,每一个点有一个按钮和一个灯泡.如果按下一个点的按钮那么和这个点直接相连的点包括这个点的灯泡的状态会改变.如果是点亮就会变成熄灭,如果 ...

  2. bzoj2466: [中山市选2009]树

    同上一题.(应该可以树形dp,然而我不会... #include<cstdio> #include<cstring> #include<iostream> #inc ...

  3. 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树

    经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...

  4. 【BZOJ2466】[中山市选2009]树 树形DP

    [BZOJ2466][中山市选2009]树 Description 图论中的树为一个无环的无向图.给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了,那么该节点的灯会从熄灭变为点亮(当按 ...

  5. BZOJ 2466: [中山市选2009]树( 高斯消元 )

    高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...

  6. BZOJ 2467: [中山市选2010]生成树 [组合计数]

    2467: [中山市选2010]生成树 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 638  Solved: 453[Submit][Status][ ...

  7. BZOJ_2467_[中山市选2010]生成树_数学

    BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...

  8. bzoj 2441 [中山市选2011]小W的问题

    bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. linux系统命令

    TOP命令 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.top是一个动态显示过程, 即可以通过用户按键来不断刷新当前状态.如 ...

  2. linux中权限的修改

    修改访问权限的linux名是:Linux访问权限的问题是这样子的:比如 d rwx rwx rwx ,d是文件所在的文件,后面有9位,分别代表不同者的权限.第一个rwx代表这文件的所有者的权限,r是r ...

  3. Linux 常用命令笔记 (持续更新)

    声明:本文是转载前辈的,地址:http://www.cnblogs.com/tovep/articles/2473147.html 在tomcat的bin目录下执行 ./shutdown.sh 为了查 ...

  4. sql自带函数语句

    --取数值表达式的绝对值select abs(-41)      41select abs(41)       41select abs(-41.12)   41.12select abs(41.12 ...

  5. 获取网卡的MAC地址原码;目前支持WIN/LINUX系统 获取机器网卡的物理(MAC)地址(服务器端)

    <?php class GetMacAddr{ var $return_array = array(); // 返回带有MAC地址的字串数组 var $mac_addr; function Ge ...

  6. mysql 字符串

    mysql中一个字符串,既可以用两个单引号表示,也可以用两个双引号表示. 比如字符串 wangxiaowei,用单引号表示 'wangxiaowei',双引号表示"wangxiaowei&q ...

  7. JavaWeb学习笔记——JavaEE基础知识

  8. FBX .NET

    https://github.com/returnString/ManagedFBX http://fbx.codeplex.com/ http://code.openhub.net/project? ...

  9. mysqlbinlog恢复数据-update20140820

    mysqlbinlog恢复数据 BINLOG就是一个记录SQL语句的过程,和普通的LOG一样.只是它是二进制存储,普通的是十进制存储. ================================ ...

  10. C# 正则匹配domain

    1.带协议表达式 var pattern = @"[(?<=http://)|(?<=https://)]+[\w\.]+[^/?#]"; 2.不带协议表达式 var ...