【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS
2400: Spoj 839 Optimal Marks
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 567 Solved: 202
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2
-1
0
1 2
2 3
Sample Output
2
HINT
数据约定
n<=500,m<=2000
样例解释
2结点的值定为0即可。
Source
Solution
刚开始看到可能束手无策,不过看见和xor有关,可以考虑分解成二进制的每一位,那么做法就有了
拆解成二进制去看每一位,建立一种最小割模型,S-->0;1-->T,很显然为inf,那么再连额外的边置成1;求最小割
第二问的话,找S集的点即可,那么直接搜一遍,累加进答案
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 20000
#define maxm 2000100
int n,m,val[maxn],Val[maxn];
struct EdgeNode{int next,to,cap;}edge[maxm<<];
int head[maxn],cnt=;
void add(int u,int v,int w) {cnt++;edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt;edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w);add(v,u,);}
int dis[maxn],que[maxn<<],cur[maxn],S,T;
bool bfs()
{
for (int i=S; i<=T; i++) dis[i]=-;
que[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=que[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,que[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
#define inf 0x7fffffff
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
int u[maxn],v[maxn];
void Build(int x)
{
cnt=; memset(head,,sizeof(head));
for (int i=; i<=n; i++)
if (val[i]>=)
if (val[i]&x) insert(i,T,inf);
else insert(S,i,inf);
for (int i=; i<=m; i++)
insert(u[i],v[i],),insert(v[i],u[i],);
}
bool visit[maxn];
void DFS(int x)
{
visit[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i^].cap && !visit[edge[i].to])
DFS(edge[i].to);
}
long long ans,Ans;
int main()
{
// freopen("graph.in","r",stdin);
// freopen("graph.out","w",stdout);
n=read(); m=read(); S=,T=n+;
for (int i=; i<=n; i++) val[i]=read();
for (int i=; i<=m; i++) u[i]=read(),v[i]=read();
for (int i=; i<=; i++)
{
Build(<<i);
ans+=(long long)(<<i)*dinic();
memset(visit,,sizeof(visit)); DFS(T);
for (int j=; j<=n; j++) if (visit[j]) Val[j]+=(<<i);
}
for (int i=; i<=n; i++) Ans+=val[i]>?val[i]:Val[i];
printf("%lld\n%lld\n",ans,Ans);
return ;
}
【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS的更多相关文章
- [BZOJ 2127] happiness 【最小割】
题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建 ...
- BZOJ 2561 最小生成树 | 网络流 最小割
链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...
- 【BZOJ2400】Spoj 839 Optimal Marks 最小割
[BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- bzoj 3275 Number(最小割)
[题意] 给定n个数,要求选出一些数满足 1.存在c,a*a+b*b=c*c 2.gcd(a,b)=1 使得和最大. [思路] 二分图的最大权独立集(可以这么叫么QAQ 先拆点,对于不满足条件的两个 ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- ●BZOJ 1797 [Ahoi2009]Mincut 最小割
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1797 题解: 详细的讲解去看http://hzwer.com/3217.html首先跑一个最 ...
随机推荐
- windows live Writer test
package com.newegg.shopping.util.listener; import javax.servlet.http.HttpSessionAttributeListener; i ...
- 048医疗项目-模块四:采购单模块—采购单受理(Dao,Service,Action三层)
需求: 我们之前把采购单交给监督单位审核了,审通过的采购单就要受理.供货商决定采购单发不发货. 说明: 我们要查的就是登录的供货商的要提供的采购药品,我们查看的是采购单详细表,至于查询条件我们用的是就 ...
- usb驱动开发15之设备生命线
总算是进入了HCD的片儿区,既然来到一个片区,怎么都要去拜会一下山头几个大哥吧.,先回忆一些我们怎么到这里的?给你列举一个调用函数过程usb_control_msg->usb_internal_ ...
- Web Api其中的PUT功能演示
Insus.NET这几天均在学习Web API知识,并练习.怎样获取数据,提交数据或是保存数据.你可以温习一下<Post model至Web Api创建或是保存数据>http://www. ...
- 精通jQuery选择器
虽然jQuery上手简单,相比于其他库学习起来较为简单,但是要全面掌握,却不轻松.因为它涉及到网页开发的方方面面,提供的方法和内部变化有上千种之多.初学者常常感到,入门很方便,提高很困难.本文的目标是 ...
- 几张图弄明白ios布局中的尺寸问题
背景 先说说逆向那事.各种曲折..各种技术过时,老老实实在啃看雪的帖子..更新会有的. 回正题,这里讨论的是在Masnory框架下的布局问题.像我这种游击队没师傅带,什么都得自己琢磨,一直没闹明白下面 ...
- .net程序员转行做手游开发经历(三)
这次就主要讲讲我们开发的过程. 策划是我们团队的一个人成员专门负责,我们几个算是出谋划策.我这边的理解是,策划首先需要对所做的事情一定要有一定的把握,意思是尽可能的想到这件事情的影响范围,类似项目管理 ...
- ASP.NET 系列:单元测试之ConfigurationManager
通过ConfigurationManager使用.NET配置文件时,可以通过添加配置文件进行单元测试,虽然可以通过测试但达不到解耦的目的.使用IConfigurationManager和Configu ...
- Middleware的艺术
定义 Middleware直译叫中间件,目前在百度上很难找到一个简单明了的含义解释,.Net下以前也比较难以看到它的身影,但在Microsoft.Owin里,多个地方都看到MiddleWare,我近来 ...
- mysql 定义自增
The database returned no natively generated identity value问题 alter table user_table MODIFY user_id I ...