完全偶图K(3,3)与完全图K5是否存在平面表示
本文论述k(3, 3)与K5平面表示的存在性。首先给出图的平面表示的定义:
若可以在平面里画出一个图而让边没有任何交叉(边的交叉是指边的直线或弧线在它们的公共端点以外的地方相交),则这个图是平面性的。这样一种画法称为这个图的平面表示。
显然,证明一个图是非平面性比证明一个图是平面性的要困难。因为对于后者我们可以用构造性的存在性证明来说明一个图是平面性的。
首先考虑K(3, 3)是否是平面性的。为了解决这个问题,我们首先可能认为其存在平面表示,于是乎我们开始尝试各种可能,企图利用构造性的存在性证明来找到一个合法的解。不幸的是在尝试了许多可能后,我们仍然没有找到一个合法解。自然的,我们在心里开始否认先前的看法,转而认为其不可能有平面表示。但是,这只是一种合情的猜想,站在G·波利亚的角度我们可能会说,数学的发现离不开猜想,然而猜想也仅仅是猜想而已,未经证明的猜想是不可靠的,对于猜想的态度应该是要么证明它,要么推翻它,对于既不能推翻也不能证明的猜想就有可能成为世界性难题,比如著名的哥德巴赫猜想和经由计算机证明的四色定理。扯远了,思想性的东西还是直接看波利亚的书吧。回到我们的主题,下面我们将证明K(3, 3) 是非平面性的。
考虑两个集合,每个集合有三个元素(顶点),在两个集合中各取出两个元素,作出在完全偶图概念下的平面表示。这显然是容易做到的,它很明显是一个四边形,且属于同一个集合的顶点在四边形的对角线上(这里广义化了,因为四边形可能是不规则的)。考虑到还有两个元素没有添加进来,我们不失一般性的任取其中之一,其摆放位置很明显有两种,要么在四边形区域内要么在四边形区域外,如果在区域内,将其和另一个集合的两个顶点相连,这样把平面划分成了三个区域,注意到剩下的那个顶点在这种情况下放到哪个区域中都不可能不发生交叉。在区域外的情况同理。至此我们证明了K(3, 3)是非平面性的。
利用相似的思想,我们可以证明完全图K5 也是非平面性的(hits: 可以先放置四个顶点,它的形式必然如下图,考虑第五个顶点,它无论放到哪里都不可能不产生交叉;或者我们可以先放置三个顶点,它构成了一个三角形,然后考虑另外两个顶点的放置方法)。
完全偶图K(3,3)与完全图K5是否存在平面表示的更多相关文章
- Codeforces 1290D - Coffee Varieties(分块暴力+完全图的链覆盖)
Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 发现自己交互题烂得跟 s ...
- leetcode-973最接近原点的K个点
leetcode-973最接近原点的K个点 题意 我们有一个由平面上的点组成的列表 points.需要从中找出 K 个距离原点 (0, 0) 最近的点. (这里,平面上两点之间的距离是欧几里德距离.) ...
- [网络流24题]最长k可重线段集[题解]
最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...
- 离散数学A
自反性:(都自指)所有的点自己指向自己[<a,a><b,b>]:反自反性:(都不自指)所有的点都绝不自己指向自己:对称性:但凡指,定互指[<a,b>,<b,a ...
- Ramsey's_theorem Friendship Theorem 友谊定理
w https://en.wikipedia.org/wiki/Ramsey's_theorem https://zh.wikipedia.org/wiki/拉姆齐定理 在组合数学上,拉姆齐(Rams ...
- 《Pro AngularJS》学习小结-01
<Pro AngularJS>该书以一个SportsStore案例为主线铺开. 一.开发环境设置 该书中所用的数据库data server开发环境是Deployed,从来没听说过,而且作者 ...
- String的常规使用集合
今天先附上代码君: package com.jacob.javase; import java.io.UnsupportedEncodingException; /* *探讨String: * * ...
- Codeforce 215 div1
C 把每个qi看成点,则问题转化为:求一个最大的k,遍历k个点的完全图需要的最小步数+1不超过n, (这里+1的原因是把起点加进去) 讨论k的奇偶: k为奇数,每个点度数为偶数,这是一个欧拉回路,步数 ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
随机推荐
- 10秒钟安装 Vim编辑器,5分钟浏览常用命令 2015.10.25
首先我想说,vim与vi的命令几乎相同,,所以学习编辑命令时很轻松,排除扩展相关,以及自动补全等配置的使用在外30秒钟安装 Vim编辑器,5分钟浏览常用命令环境:虚拟机Ubuntu:安装vim并浏览命 ...
- Crystal Reports 2008(水晶报表) 启动时检查更新
在安装好了Crystal Reports后,每次打开的是都会出现以下提示: 服务器正在运行中 由于另一个程序正在运行中,此操作无法完成.请选择“切换到”来激活正在运行中的程序,并更正问题. 碰到这样的 ...
- spring源码学习之路---IOC实现原理(三)
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 上一章我们已经初步认识了Be ...
- Express 路由
路由 路由是指如何定义应用的端点(URIs)以及如何响应客户端的请求. 路由是由一个 URI.HTTP 请求(GET.POST等)和若干个句柄组成,它的结构如下: app.METHOD(path, [ ...
- Struts2中的Action类(解耦方式,耦合方式)
一.解耦方式 特点:对web资源进行了封装,便于单元测试. 实现:ActionContext和接口方式 1.ActionContext 特点:Action执行的上下文对象.保存了执行Action所需要 ...
- do some projects in macine learning using python
i want to do some projects in macine learning using python help me in this context I don't know if y ...
- JavaScript基础 DOM的操作
1.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 2.Windows对象操作 一.属性和方法: window对象——浏览器 ...
- super()和this()的区别
1)调用super()必须写在子类构造方法的第一行,否则编译不通过.每个子类构造方法的第一条语句,都是隐含地调用super(),如果父类没有这种形式的构造函数,那么在编译的时候就会报错. 2)supe ...
- 理解group by 语句的扩展使用
在SQL的开发中我们会经常使用group by语句对数据进行分组统计,然而在一些复杂的BI报表开发中会常遇到更复杂的分组需求,单单使用group by 就不能解决我们的问题了,这时我们就需要学习了解一 ...
- 牛人整理分享的面试知识:操作系统、计算机网络、设计模式、Linux编程,数据结构总结 转载
基础篇:操作系统.计算机网络.设计模式 一:操作系统 1. 进程的有哪几种状态,状态转换图,及导致转换的事件. 2. 进程与线程的区别. 3. 进程通信的几种方式. 4. 线程同步几种方式.(一定要会 ...