原文链接:https://www.52ml.net/20287.html

这篇博文主要讲了深度学习在目标检测中的发展。

博文首先介绍了传统的目标检测算法过程:

传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤:

  1. 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;
  2. 提取候选区域相关的视觉特征。比如人脸检测常用的Harr特征;行人检测和普通目标检测常用的HOG特征等;
  3. 利用分类器进行识别,比如常用的SVM模型。

基于深度学习的目标检测分为两派:

  1. 基于区域提名的,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN;
  2. 端到端(End-to-End),无需区域提名的,如YOLO、SSD。

目前来说,基于区域提名的方法依然占据上风,但端到端的方法速度上优势明显,后续的发展拭目以待。

接下来是对相关研究的详细介绍。

1、首先介绍的是区域提名--选择性搜索,以及用深度学习做目标检测的早期工作--Overfeat。

选择性搜索:不断迭代合并候选区域,已被弃用。

OverFeat:  用CNN做分类、定位和检测的经典之作(马克一记)。

2、基于区域提名的方法:主要介绍R-CNN系列

R-CNN:之前的工作都是用滑动窗口的方式,速度很慢,R-CNN采用的是selective search。

它和OverFeat类似,但缺点是速度慢。

SPP-net:针对剪裁技术可能出现的问题,SPP不管是对整副图像还是裁剪后的图像,都提取

相同维度的特征,这样可以统一送至全连接层。

FAST R-CNN:主要解决2000个候选框带来的重复计算问题。

FASTER R-CNN:抛弃了selective search,引入了RPN网格。

R-FCN:将最后的全连接层换为了卷积层。

3、端到端(end-to-end):无需区域提名

YOLO:将448*448的图像分成S*S的网络,简化目标检测流程;

SSD:   YOLO的改进,分为两部分:图像分类的网络和多尺度特征映射网络。

目标检测还存在一些问题,比如小目标检测问题。

#Deep Learning回顾#之基于深度学习的目标检测(阅读小结)的更多相关文章

  1. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN

    基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...

  2. 基于深度学习的目标检测(object detection)—— rcnn、fast-rcnn、faster-rcnn

    模型和方法: 在深度学习求解目标检测问题之前的主流 detection 方法是,DPM(Deformable parts models), 度量与评价: mAP:mean Average Precis ...

  3. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  4. (转)基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  5. 基于深度学习的目标检测算法:SSD——常见的目标检测算法

    from:https://blog.csdn.net/u013989576/article/details/73439202 问题引入: 目前,常见的目标检测算法,如Faster R-CNN,存在着速 ...

  6. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  9. 基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测

    话题 3: 基于深度学习的二进制恶意样本检测 分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势.而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也 ...

随机推荐

  1. WinForm------TreeList修改节点图标和按钮样式

    转载: https://documentation.devexpress.com/#WindowsForms/DevExpressXtraTreeListTreeList_CustomDrawNode ...

  2. Jetty 简单使用

    Jetty与Tomcat类似,也是一种Servlet引擎,可以用来运行Java Web项目. 其常被嵌入到项目中,以便于开发.测试,以及Demo等项目的运行. 1.作为插件——作为开发.测试时项目运行 ...

  3. (自用)专业排版套装:CTeX + TeXStudio

    \documentclass[UTF8,landscape]{ctexart}%UTF8,ctexart中文支持,landscape横向版面 \usepackage{tikz}%画图 \usepack ...

  4. One Night Ultimate Werewolf Daybreak

    http://beziergames.com/products/replacement-tiles-tokens-for-one-night-ultimate-werewolf http://www. ...

  5. ecshop去掉“云服务中心”或者是“模板堂知识库”

    ECSHOP开发中心(www.68ecshop.com)教程介绍一下如何去除后台云服务中心菜单: 打开admin/templates/menu.htm,把415行的 document.getEleme ...

  6. ecshop后台模板设置中将非可编辑区改为可编辑区

    原代码 <file name="category.dwt"> <region name="左边区域"> <lib>cart& ...

  7. background属性

    background: url(images/01.jpg) 0 10px; 效果: background: url(images/01.jpg) 0 -10px; 效果: *注释:10px 是网上去 ...

  8. Sql2008R2设置远程链接

    下边的文章是从百度经验里粘过来的.. 经过测试确实有效..留个备份.. 有个小情况在前边说一下.. 在操作前一定要确定自己的sa用户密码是不是一样..不要以为自己知道的是对的就直接略过某些步骤.. 俗 ...

  9. C# 获取指定接口的所有实现类

    var types = AppDomain.CurrentDomain.GetAssemblies() .SelectMany(a => a.GetTypes().Where(t => t ...

  10. mysql和oracle的区别(功能性能、选择、使用它们时的sql等对比)

    一.并发性 并发性是oltp数据库最重要的特性,但并发涉及到资源的获取.共享与锁定. mysql:mysql以表级锁为主,对资源锁定的粒度很大,如果一个session对一个表加锁时间过长,会让其他se ...