MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。
PDF格式教材下载 Sequences and Series
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
- Suppose that $\left(a_n\right)$ is a sequence. To say that $\lim_{n\to \infty}a_n=L$ is to say that for every $\varepsilon>0$, there is an $N > 0$, so that whenever $n>N$, we have $|a_n-L| < \varepsilon$. If $\lim_{n\to\infty}a_n=L$ we say that the sequence converges. If there is no finite value $L$ so that $\lim_{n\to\infty}a_n = L$, then we say that the limit does not exist, or equivalently that the sequence diverges.
- Suppose $(a_n)$ is a sequence with initial index $N$, and suppose we have a sequence of integers $(n_i)$ so that $$N \leq n_1 < n_2 < n_3 < n_4 < n_5 < \cdots$$ Then the sequence $(b_i)$ given by $b_i = a_{n_i}$ is said to be a subsequence of the sequence $a_n$.
- If $(b_i)$ is a subsequence of the convergent sequence $(a_n)$, then $$\lim_{i \to \infty} b_i = \lim_{n \to \infty} a_n$$
- Suppose $(b_i)$ and $(c_i)$ are convergent subsequences of the sequence $(a_n)$, but $$\lim_{i \to \infty} b_i \neq \lim_{i \to \infty} c_i.$$ Then the sequence $(a_n)$ does not converge.
- Squeeze Theorem: Suppose there is some $N$ so that for all $n > N$, it is the case that $a_n \le b_n \le c_n$. If $$\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$$ then $\lim_{n\to\infty}b_n=L$.
- $$\lim_{n\to\infty}|a_n|=0$$ if and only if $$\lim_{n\to\infty}a_n=0$$
- The sequence $a_n = r^n$ converges when $-1 < r \le 1$, and diverges otherwise. In symbols, $$\lim_{n\to\infty} r^n=\begin{cases}0& \mbox{if $-1 < r < 1$,} \\ 1& \mbox{if $r=1$, and} \\ \mbox{does not exist} & \mbox{if $r \leq -1$ or $r > 1$.} \end{cases}$$
- A sequence is called increasing (or sometimes strictly increasing) if $a_n < a_{n+1}$ for all $n$. It is called non-decreasing if $a_n\le a_{n+1}$ for all $n$. Similarly a sequence is decreasing (or, by some people, strictly decreasing) if $a_n > a_{n+1}$ for all $n$ and non-increasing if $a_n\ge a_{n+1}$ for all $n$.
- If a sequence is increasing, non-decreasing, decreasing, or non-increasing, it is said to be monotonic.
- A sequence $(a_n)$ is bounded above if there is some number $M$ so that for all $n$, we have $a_n\le M$. Likewise, a sequence $(a_n)$ is bounded below if there is some number $M$ so that for every $n$, we have $a_n\ge M$. If a sequence is both bounded above and bounded below, the sequence is said to be bounded.
- If the sequence $a_n$ is bounded and monotonic, then $\lim_{n \to \infty} a_n$ exists. In short, bounded monotonic sequences converge.
Exercises
1. Compute $$\lim_{x\to\infty} x^{1/x}$$
Solution:
$$\lim_{x\to\infty} x^{1/x}=\lim_{x\to\infty}(e^{\ln x})^{1/x} =\lim_{x\to\infty}e^{\frac{\ln x}{x}}$$ By L'Hopital's rule, we have $$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{1/x}{1}=0$$ Thus, the result is $$\lim_{x\to\infty} x^{1/x}=e^0=1$$
2. Use the squeeze theorem to show that $$\lim_{n\to\infty} {n!\over n^n}=0$$
Solution:
$$0<\frac{n!}{n^n}=\frac{1}{n}\cdot\frac{2}{n}\cdot\cdots\cdots\cdot\frac{n}{n} < \frac{1}{n}\to0\ (n\to\infty)$$ According to the squeeze theorem, $$\lim_{n\to\infty} {n!\over n^n}=0$$
3. Determine whether $$\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$$\sqrt{n+47}-\sqrt{n}=\frac{47}{\sqrt{n+47}+\sqrt{n}}$$ Hence it is decreasing. On the other hand, $$\sqrt{n+47}-\sqrt{n}\ge0$$ that is, it is bounded below. Thus, it is convergent. And we have $$\lim_{x\to\infty}(\sqrt{n+47}-\sqrt{n})=\lim_{n\to\infty}\frac{47}{\sqrt{n+47}+\sqrt{n}}=0$$ 4. Determine whether $$\left\{{n^2+1\over (n+1)^2}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$${(n+1)^2\over n^2+1}=1+{2n\over n^2+1}$$ which is decreasing. Thus $${n^2+1\over (n+1)^2}$$ is increasing. On the other hand, $${n^2+1\over (n+1)^2}={n^2+1\over n^2+2n+1} < 1$$ which means it is bounded above. Thus it is convergent. And we have $$\lim_{n\to\infty}{n^2+1\over (n+1)^2}=\lim_{n\to\infty}\frac{n^2+1}{n^2+2n+1}=\lim_{n\to\infty}\frac{1+\frac{1}{n^2}}{1+\frac{2}{n}+\frac{1}{n^2}}=1$$
5. Determine whether $$\left\{{n+47\over\sqrt{n^2+3n}}\right\}_{n=1}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$$f^{'}(n)=\frac{\sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3)}{n^2+3n} < 0$$ $$\Longleftrightarrow \sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3) < 0$$ $$\Longleftrightarrow n^2+3n < {1\over2}\cdot(2n^2+97n+141)$$ $$\Longleftrightarrow n^2+3n < n^2+48.5n+70.5$$ The last inequality is obvious. Thus it is decreasing. On the other hand, $${n+47\over\sqrt{n^2+3n}}>0$$ which means it is bounded below. Hence it is convergent. And we have $$\lim_{n\to\infty}{n+47\over\sqrt{n^2+3n}}=\lim_{n\to\infty}{1+\frac{47}{n}\over\sqrt{1+\frac{3}{n}}}=1$$
6. Determine whether $$\left\{{2^n\over n!}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$${a_{n+1}\over a_n}={\frac{2^{n+1}}{(n+1)!}\over\frac{2^n}{n!}}={2\over n+1} < 1$$ when $n > 2$. Thus it is decreasing. On the other hand, $${2^n\over n!}>0$$ which means it is bounded below. Thus it is convergent. $$0<{2^n\over n!}={2\over n}\cdot {2\over n-1} \cdot\cdots\cdots\cdot{2\over3}\cdot{2\over2}\cdot{2\over1} < ({2\over3})^{n-2}\cdot2\to0\ (n\to\infty)$$ According to squeeze theorem we have $$\lim_{n\to\infty}{2^n\over n!}=0$$
MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences的更多相关文章
- MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 2. Series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 《Java学习笔记(第8版)》学习指导
<Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...
- 20145330第五周《Java学习笔记》
20145330第五周<Java学习笔记> 这一周又是紧张的一周. 语法与继承架构 Java中所有错误都会打包为对象可以尝试try.catch代表错误的对象后做一些处理. 使用try.ca ...
随机推荐
- Oracle PL/SQL 入门
PL/SQL 全称:Procedure Language/SQL.产生背景自己去百度. 模板: Declare ---变量定义 num ; name ) := 'damon'; idesc cnt_i ...
- c++ 指针(一)
指针:是说指针名表示的是地址.是一个变量,存储的是值的地址,而不是值本身 *运算符被称为间接值或解除引用运算符也可以叫做取地址符 声明一个指针 int * p_data; * p_data的类型为in ...
- visual studio 2012 的制作ActiveX、打包和发布
开发环境是Vs 2012 Framework 4.0 源码和制作工具在文章最下边 一. ActiveX控件Demo 新建一个Window窗体控件库项目 在自动生成的UserControl1页面上添加 ...
- Python __init__.py 作用详解
__init__.py 文件的作用是将文件夹变为一个Python模块,Python 中的每个模块的包中,都有__init__.py 文件. 通常__init__.py 文件为空,但是我们还可以为它增加 ...
- 基于FPGA的通信信号源的设计
通信信号源设计原理 通过设计一个DDS信号源,然后将该信号作为载波信号,再对基带信号进行2ASK.2FSK.2PSK.2DPSK调制,进而产生多种通信信号. 设计框图如下: 将PN序列进行2ASK.2 ...
- 离散系统频响特性函数freqz()
MATLAB提供了专门用于求离散系统频响特性的函数freqz(),调用freqz()的格式有以下两种: l [H,w]=freqz(B,A,N) B和A分别为离散系统的系统函数分子.分母 ...
- Webmin|Linux管理员远程管理工具
介绍: Webmin is a web-based interface for system administration for Unix. Using any modern web browser ...
- yii2权限控制rbac之菜单menu最详细教程
前面我们在博文 yii2搭建完美后台并实现rbac权限控制实例教程中完美实现了yii2的后台搭建和rbac权限控制,如果你还没有实现,请先看上文再回来参考本文,因为本文是在上文的基础上进行完善和补充. ...
- Linux下安装libiconv使php支持iconv函数
libiconv组件安装好了可以让我们php支持iconv函数了,这个函数的作用就是字符编码强制转换了,下面和111cn小编一起来看一个Linux中安装libiconv使php支持iconv函数的例子 ...
- HIbernate的增删改
数据库是oracle 以一对多为例:user50一的一方 order50是多的一方 首先是实体类: 这里的实体是双向关系,既通过user50可以找到order50,通过order50可以找到 ...